Skip to main content
Erschienen in: Journal of Materials Science 1/2016

01.09.2015 | 50th Anniversary

Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine

verfasst von: Yuping Bao, Tianlong Wen, Anna Cristina S. Samia, Amit Khandhar, Kannan M. Krishnan

Erschienen in: Journal of Materials Science | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several nontraditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body—an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Unless specified, nanoparticle size in this review always refers to diameter
 
Literatur
1.
Zurück zum Zitat Casbeer E, Sharma VK, Li XZ (2012) Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Technol 87:1–14CrossRef Casbeer E, Sharma VK, Li XZ (2012) Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Technol 87:1–14CrossRef
2.
Zurück zum Zitat Mangrulkar PA, Polshettiwar V, Labhsetwar NK, Varma RS, Rayalu SS (2012) Nano-ferrites for water splitting: unprecedented high photocatalytic hydrogen production under visible light. Nanoscale 4:5202–5209CrossRef Mangrulkar PA, Polshettiwar V, Labhsetwar NK, Varma RS, Rayalu SS (2012) Nano-ferrites for water splitting: unprecedented high photocatalytic hydrogen production under visible light. Nanoscale 4:5202–5209CrossRef
3.
Zurück zum Zitat Han SB, Kang TB, Joo OS, Jung KD (2007) Water splitting for hydrogen production with ferrites. Sol Energy 81:623–628CrossRef Han SB, Kang TB, Joo OS, Jung KD (2007) Water splitting for hydrogen production with ferrites. Sol Energy 81:623–628CrossRef
4.
Zurück zum Zitat Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181CrossRef Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181CrossRef
5.
Zurück zum Zitat Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558CrossRef Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558CrossRef
6.
Zurück zum Zitat Plank C, Vlaskou D, Schillinger U, Mykhaylyk O (2011) MagnetofectionTM platform: from magnetic nanoparticles to novel nucleic acid therapeutics. Ther Deliv 2:717–726CrossRef Plank C, Vlaskou D, Schillinger U, Mykhaylyk O (2011) MagnetofectionTM platform: from magnetic nanoparticles to novel nucleic acid therapeutics. Ther Deliv 2:717–726CrossRef
7.
Zurück zum Zitat Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580CrossRef Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580CrossRef
8.
Zurück zum Zitat Jain RK (1998) The next frontier of molecular medicine: delivery of therapeutics. Nat Med 4:655–657CrossRef Jain RK (1998) The next frontier of molecular medicine: delivery of therapeutics. Nat Med 4:655–657CrossRef
9.
Zurück zum Zitat Ito A, Shinkai M, Honda H, Kobayashi T (2005) Review: medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11CrossRef Ito A, Shinkai M, Honda H, Kobayashi T (2005) Review: medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11CrossRef
10.
Zurück zum Zitat Liang QL, Macher T, Xu YL, Bao YP, Cassady CJ (2014) MALDI MS in-source decay of glycans using a glutathione-capped iron oxide nanoparticle matrix. Anal Chem 86:8496–8503CrossRef Liang QL, Macher T, Xu YL, Bao YP, Cassady CJ (2014) MALDI MS in-source decay of glycans using a glutathione-capped iron oxide nanoparticle matrix. Anal Chem 86:8496–8503CrossRef
11.
Zurück zum Zitat Baldi G, Bonacchi D, Innocenti C, Lorenzi G, Sangregorio C (2007) Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties. J Magn Magn Mater 311:10–16CrossRef Baldi G, Bonacchi D, Innocenti C, Lorenzi G, Sangregorio C (2007) Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties. J Magn Magn Mater 311:10–16CrossRef
12.
Zurück zum Zitat Vestal CR, Zhang ZJ (2003) Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J Am Chem Soc 125:9828–9833CrossRef Vestal CR, Zhang ZJ (2003) Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J Am Chem Soc 125:9828–9833CrossRef
13.
Zurück zum Zitat Song O, Zhang ZJ (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126:6164–6168CrossRef Song O, Zhang ZJ (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126:6164–6168CrossRef
14.
Zurück zum Zitat Palchoudhury S, Xu Y, Goodwin J, Bao Y (2011) Synthesis of iron oxide nanoworms. J Appl Phys 109:07E314CrossRef Palchoudhury S, Xu Y, Goodwin J, Bao Y (2011) Synthesis of iron oxide nanoworms. J Appl Phys 109:07E314CrossRef
15.
Zurück zum Zitat Palchoudhury S, Xu YL, Rushdi A, Holler RA, Bao YP (2012) Controlled synthesis of iron oxide nanoplates and nanoflowers. Chem Commun 48:10499–10501CrossRef Palchoudhury S, Xu YL, Rushdi A, Holler RA, Bao YP (2012) Controlled synthesis of iron oxide nanoplates and nanoflowers. Chem Commun 48:10499–10501CrossRef
16.
Zurück zum Zitat Palchoudhury S, An W, Xu YL, Qin Y, Zhang ZT, Chopra N et al (2011) Synthesis and growth mechanism of iron oxide nanowhiskers. Nano Lett 11:1141–1146CrossRef Palchoudhury S, An W, Xu YL, Qin Y, Zhang ZT, Chopra N et al (2011) Synthesis and growth mechanism of iron oxide nanowhiskers. Nano Lett 11:1141–1146CrossRef
17.
Zurück zum Zitat Peddis D, Cannas C, Musinu A, Piccaluga G (2009) Magnetism in nanoparticles: beyond the effect of particle size. Chem-A Eur J 15:7822–7829CrossRef Peddis D, Cannas C, Musinu A, Piccaluga G (2009) Magnetism in nanoparticles: beyond the effect of particle size. Chem-A Eur J 15:7822–7829CrossRef
18.
Zurück zum Zitat Peddis D, Cannas C, Musinu A, Ardu A, Orru F, Fiorani D et al (2013) Beyond the effect of particle size: influence of CoFe2O4 nanoparticle arrangements on magnetic properties. Chem Mater 25:2005–2013CrossRef Peddis D, Cannas C, Musinu A, Ardu A, Orru F, Fiorani D et al (2013) Beyond the effect of particle size: influence of CoFe2O4 nanoparticle arrangements on magnetic properties. Chem Mater 25:2005–2013CrossRef
19.
Zurück zum Zitat Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H, Kim J-W et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nano 6:418–422CrossRef Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H, Kim J-W et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nano 6:418–422CrossRef
20.
Zurück zum Zitat Mohapatra J, Mitra A, Bahadur D, Aslam M (2013) Surface controlled synthesis of MFe2O4 (M = Mn, Fe Co, Ni and Zn) nanoparticles and their magnetic characteristics. CrystEngComm 15:524–532CrossRef Mohapatra J, Mitra A, Bahadur D, Aslam M (2013) Surface controlled synthesis of MFe2O4 (M = Mn, Fe Co, Ni and Zn) nanoparticles and their magnetic characteristics. CrystEngComm 15:524–532CrossRef
21.
Zurück zum Zitat Li QL, Wang YF, Chang CB (2010) Study of Cu Co, Mn and La doped NiZn ferrite nanorods synthesized by the coprecipitation method. J Alloy Compd 505:523–526CrossRef Li QL, Wang YF, Chang CB (2010) Study of Cu Co, Mn and La doped NiZn ferrite nanorods synthesized by the coprecipitation method. J Alloy Compd 505:523–526CrossRef
22.
Zurück zum Zitat Xu Y, Sherwood J, Qin Y, Holler RA, Bao Y (2015) A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes. Nanoscale 7:12641–12649CrossRef Xu Y, Sherwood J, Qin Y, Holler RA, Bao Y (2015) A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes. Nanoscale 7:12641–12649CrossRef
23.
Zurück zum Zitat Scherer C, Neto AMF (2005) Ferrofluids: properties and applications. Braz J Phys 35:718–727CrossRef Scherer C, Neto AMF (2005) Ferrofluids: properties and applications. Braz J Phys 35:718–727CrossRef
24.
Zurück zum Zitat Xie J, Huang J, Li X, Sun S, Chen X (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16:1278–1294CrossRef Xie J, Huang J, Li X, Sun S, Chen X (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16:1278–1294CrossRef
25.
Zurück zum Zitat Namdeo M, Saxena S, Tankhiwale R, Bajpai M, Mohan YM, Bajpai SK (2008) Magnetic nanoparticles for drug delivery applications. J Nanosci Nanotechnol 8:3247–3271CrossRef Namdeo M, Saxena S, Tankhiwale R, Bajpai M, Mohan YM, Bajpai SK (2008) Magnetic nanoparticles for drug delivery applications. J Nanosci Nanotechnol 8:3247–3271CrossRef
26.
Zurück zum Zitat Gazeau F, Levy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3:831–844CrossRef Gazeau F, Levy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3:831–844CrossRef
27.
Zurück zum Zitat Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13:1266–1276 Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13:1266–1276
28.
Zurück zum Zitat Park M, Lee N, Choi SH, An K, Yu SH, Kim JH et al (2011) Large-scale synthesis of ultrathin manganese oxide nanoplates and their applications to T1 MRI contrast agents. Chem Mater 23:3318–3324CrossRef Park M, Lee N, Choi SH, An K, Yu SH, Kim JH et al (2011) Large-scale synthesis of ultrathin manganese oxide nanoplates and their applications to T1 MRI contrast agents. Chem Mater 23:3318–3324CrossRef
29.
Zurück zum Zitat Macher T, Totenhagen J, Sherwood J, Qin Y, Gurler D, Bolding MS et al (2015) Ultrathin iron oxide nanowhiskers as positive contrast agents for magnetic resonance imaging. Adv Funct Mater 25:490–494CrossRef Macher T, Totenhagen J, Sherwood J, Qin Y, Gurler D, Bolding MS et al (2015) Ultrathin iron oxide nanowhiskers as positive contrast agents for magnetic resonance imaging. Adv Funct Mater 25:490–494CrossRef
30.
Zurück zum Zitat Park JH, von Maltzahn G, Zhang LL, Schwartz MP, Ruoslahti E, Bhatia SN et al (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20:1630–1635CrossRef Park JH, von Maltzahn G, Zhang LL, Schwartz MP, Ruoslahti E, Bhatia SN et al (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20:1630–1635CrossRef
31.
Zurück zum Zitat Lee N, Choi Y, Lee Y, Park M, Moon WK, Choi SH et al (2012) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett 12:3127–3131CrossRef Lee N, Choi Y, Lee Y, Park M, Moon WK, Choi SH et al (2012) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett 12:3127–3131CrossRef
32.
Zurück zum Zitat Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M et al (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091CrossRef Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M et al (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091CrossRef
33.
Zurück zum Zitat Ferguson RM, Khandhar AP, Kemp SJ, Arami H, Saritas EU, Croft LR et al (2015) Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging 34:1077–1084CrossRef Ferguson RM, Khandhar AP, Kemp SJ, Arami H, Saritas EU, Croft LR et al (2015) Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging 34:1077–1084CrossRef
34.
Zurück zum Zitat Majetich SA, Sachan M (2006) Magnetostatic interactions in magnetic nanoparticle assemblies: energy, time and length scales. J Phys D 39:R407–R422CrossRef Majetich SA, Sachan M (2006) Magnetostatic interactions in magnetic nanoparticle assemblies: energy, time and length scales. J Phys D 39:R407–R422CrossRef
35.
Zurück zum Zitat Majetich SA, Wen T, Mefford OT (2013) Magnetic nanoparticles. MRS Bull 38:899–903CrossRef Majetich SA, Wen T, Mefford OT (2013) Magnetic nanoparticles. MRS Bull 38:899–903CrossRef
36.
Zurück zum Zitat Talapin DV, Murray CB (2005) PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310:86–89CrossRef Talapin DV, Murray CB (2005) PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310:86–89CrossRef
37.
Zurück zum Zitat Kim TH, Cho KS, Lee EK, Lee SJ, Chae J, Kim JW et al (2011) Full-colour quantum dot displays fabricated by transfer printing. Nat Photonics 5:176–182CrossRef Kim TH, Cho KS, Lee EK, Lee SJ, Chae J, Kim JW et al (2011) Full-colour quantum dot displays fabricated by transfer printing. Nat Photonics 5:176–182CrossRef
38.
Zurück zum Zitat Han ST, Zhou Y, Xu ZX, Huang LB, Yang XB, Roy VAL (2012) Microcontact printing of ultrahigh density gold nanoparticle monolayer for flexible flash memories. Adv Mater 24:3556–3561CrossRef Han ST, Zhou Y, Xu ZX, Huang LB, Yang XB, Roy VAL (2012) Microcontact printing of ultrahigh density gold nanoparticle monolayer for flexible flash memories. Adv Mater 24:3556–3561CrossRef
39.
Zurück zum Zitat Nie ZH, Petukhova A, Kumacheva E (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5:15–25CrossRef Nie ZH, Petukhova A, Kumacheva E (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5:15–25CrossRef
40.
Zurück zum Zitat Zhang W, Wen TL, Krishnan KM (2012) Positive exchange bias and upward magnetic relaxation in a Fe-film/CoO-nanoparticle hybrid system. Appl Phys Lett 101:132401 (6 pp) CrossRef Zhang W, Wen TL, Krishnan KM (2012) Positive exchange bias and upward magnetic relaxation in a Fe-film/CoO-nanoparticle hybrid system. Appl Phys Lett 101:132401 (6 pp) CrossRef
41.
Zurück zum Zitat Majetich SA, Wen T, Booth RA (2011) Functional magnetic nanoparticle assemblies: formation, collective behavior, and future directions. ACS Nano 5:6081–6084CrossRef Majetich SA, Wen T, Booth RA (2011) Functional magnetic nanoparticle assemblies: formation, collective behavior, and future directions. ACS Nano 5:6081–6084CrossRef
42.
Zurück zum Zitat Bao YP, Beerman M, Krishnan KM (2004) Controlled self-assembly of colloidal cobalt nanocrystals mediated by magnetic interactions. J Magn Magn Mater 272:E1367–E1368CrossRef Bao YP, Beerman M, Krishnan KM (2004) Controlled self-assembly of colloidal cobalt nanocrystals mediated by magnetic interactions. J Magn Magn Mater 272:E1367–E1368CrossRef
43.
Zurück zum Zitat Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605CrossRef Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605CrossRef
44.
Zurück zum Zitat Bigioni TP, Lin XM, Nguyen TT, Corwin EI, Witten TA, Jaeger HM (2006) Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater 5:265–270CrossRef Bigioni TP, Lin XM, Nguyen TT, Corwin EI, Witten TA, Jaeger HM (2006) Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater 5:265–270CrossRef
45.
Zurück zum Zitat Huang JX, Kim F, Tao AR, Connor S, Yang PD (2005) Spontaneous formation of nanoparticle stripe patterns through dewetting. Nat Mater 4:896–900CrossRef Huang JX, Kim F, Tao AR, Connor S, Yang PD (2005) Spontaneous formation of nanoparticle stripe patterns through dewetting. Nat Mater 4:896–900CrossRef
46.
Zurück zum Zitat Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421CrossRef Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421CrossRef
47.
Zurück zum Zitat Talapin DV, Shevchenko EV, Murray CB, Titov AV, Kral P (2007) Dipole-dipole interactions in nanoparticle superlattices. Nano Lett 7:1213–1219CrossRef Talapin DV, Shevchenko EV, Murray CB, Titov AV, Kral P (2007) Dipole-dipole interactions in nanoparticle superlattices. Nano Lett 7:1213–1219CrossRef
48.
Zurück zum Zitat Liddle JA, Cui Y, Alivisatos P (2004) Lithographically directed self-assembly of nanostructures. J Vac Sci Technol B 22:3409–3414CrossRef Liddle JA, Cui Y, Alivisatos P (2004) Lithographically directed self-assembly of nanostructures. J Vac Sci Technol B 22:3409–3414CrossRef
49.
Zurück zum Zitat Lin XM, Jaeger HM, Sorensen CM, Klabunde KJ (2001) Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J Phys Chem B 105:3353–3357CrossRef Lin XM, Jaeger HM, Sorensen CM, Klabunde KJ (2001) Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J Phys Chem B 105:3353–3357CrossRef
50.
Zurück zum Zitat Yin YD, Lu Y, Gates B, Xia YN (2001) Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J Am Chem Soc 123:8718–8729CrossRef Yin YD, Lu Y, Gates B, Xia YN (2001) Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J Am Chem Soc 123:8718–8729CrossRef
51.
Zurück zum Zitat Bishop KJM, Wilmer CE, Soh S, Grzybowski BA (2009) Nanoscale forces and their uses in self-assembly. Small 5:1600–1630CrossRef Bishop KJM, Wilmer CE, Soh S, Grzybowski BA (2009) Nanoscale forces and their uses in self-assembly. Small 5:1600–1630CrossRef
52.
Zurück zum Zitat Cheng GJ, Romero D, Fraser GT, Walker ARH (2005) Magnetic-field-induced assemblies of cobalt nanoparticles. Langmuir 21:12055–12059CrossRef Cheng GJ, Romero D, Fraser GT, Walker ARH (2005) Magnetic-field-induced assemblies of cobalt nanoparticles. Langmuir 21:12055–12059CrossRef
53.
Zurück zum Zitat Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB (2006) Structural diversity in binary nanoparticle superlattices. Nature 439:55–59CrossRef Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB (2006) Structural diversity in binary nanoparticle superlattices. Nature 439:55–59CrossRef
54.
Zurück zum Zitat Gao YH, Bao YP, Beerman M, Yasuhara A, Shindo D, Krishnan KM (2004) Superstructures of self-assembled cobalt nanocrystals. Appl Phys Lett 84:3361–3363CrossRef Gao YH, Bao YP, Beerman M, Yasuhara A, Shindo D, Krishnan KM (2004) Superstructures of self-assembled cobalt nanocrystals. Appl Phys Lett 84:3361–3363CrossRef
55.
Zurück zum Zitat Wen TL, Majetich SA (2011) Ultra-large-area self-assembled mono layers of nanoparticles. ACS Nano 5:8868–8876CrossRef Wen TL, Majetich SA (2011) Ultra-large-area self-assembled mono layers of nanoparticles. ACS Nano 5:8868–8876CrossRef
56.
Zurück zum Zitat Wen T, Zhang D, Wen Q, Zhang H, Liao Y, Li Q et al (2015) Magnetic nanoparticle assembly arrays prepared by hierarchical self-assembly on a patterned surface. Nanoscale 7:4906–4911CrossRef Wen T, Zhang D, Wen Q, Zhang H, Liao Y, Li Q et al (2015) Magnetic nanoparticle assembly arrays prepared by hierarchical self-assembly on a patterned surface. Nanoscale 7:4906–4911CrossRef
57.
Zurück zum Zitat Wen TL, Brush LN, Krishnan KM (2014) A generalized diffusion model for growth of nanoparticles synthesized by colloidal methods. J Colloid Interface Sci 419:79–85CrossRef Wen TL, Brush LN, Krishnan KM (2014) A generalized diffusion model for growth of nanoparticles synthesized by colloidal methods. J Colloid Interface Sci 419:79–85CrossRef
58.
Zurück zum Zitat Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117CrossRef Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117CrossRef
59.
Zurück zum Zitat Bao YP, An W, Turner CH, Krishnan KM (2010) The critical role of surfactants in the growth of cobalt nanoparticles. Langmuir 26:478–483CrossRef Bao YP, An W, Turner CH, Krishnan KM (2010) The critical role of surfactants in the growth of cobalt nanoparticles. Langmuir 26:478–483CrossRef
60.
Zurück zum Zitat Lee D-E, Koo H, Sun I-C, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672CrossRef Lee D-E, Koo H, Sun I-C, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672CrossRef
61.
Zurück zum Zitat Jin YD, Jia CX, Huang SW, O’Donnell M, Gao XH (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1:1–8CrossRef Jin YD, Jia CX, Huang SW, O’Donnell M, Gao XH (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1:1–8CrossRef
62.
Zurück zum Zitat Bao YP, Calderon H, Krishnan KM (2007) Synthesis and characterization of magnetic-optical Co-Au core-shell nanoparticles. J Phys Chem C 111:1941–1944CrossRef Bao YP, Calderon H, Krishnan KM (2007) Synthesis and characterization of magnetic-optical Co-Au core-shell nanoparticles. J Phys Chem C 111:1941–1944CrossRef
63.
Zurück zum Zitat Corr SA, Rakovich YP, Gun’ko YK (2008) Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett 3:87–104CrossRef Corr SA, Rakovich YP, Gun’ko YK (2008) Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett 3:87–104CrossRef
64.
Zurück zum Zitat Xu YL, Palchoudhury S, Qin Y, Macher T, Bao YP (2012) Make conjugation simple: a facile approach to integrated nanostructures. Langmuir 28:8767–8772CrossRef Xu YL, Palchoudhury S, Qin Y, Macher T, Bao YP (2012) Make conjugation simple: a facile approach to integrated nanostructures. Langmuir 28:8767–8772CrossRef
65.
Zurück zum Zitat Arami H, Khandhar AP, Tomitaka A, Yu E, Goodwill PW, Conolly SM et al (2015) In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials 52:251–261CrossRef Arami H, Khandhar AP, Tomitaka A, Yu E, Goodwill PW, Conolly SM et al (2015) In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials 52:251–261CrossRef
66.
Zurück zum Zitat Arami H, Krishnan KM (2014) Intracellular performance of tailored nanoparticle tracers in magnetic particle imaging. J Appl Phys 115:17B306 (3 pp) CrossRef Arami H, Krishnan KM (2014) Intracellular performance of tailored nanoparticle tracers in magnetic particle imaging. J Appl Phys 115:17B306 (3 pp) CrossRef
67.
Zurück zum Zitat Gonzales-Weimuller M, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 321:1947–1950CrossRef Gonzales-Weimuller M, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 321:1947–1950CrossRef
68.
Zurück zum Zitat Gonzales M, Krishnan KM (2005) Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. J Magn Magn Mater 293:265–270CrossRef Gonzales M, Krishnan KM (2005) Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. J Magn Magn Mater 293:265–270CrossRef
69.
Zurück zum Zitat Clift MJD, Rothen-Rutishauser B, Brown DM, Duffin R, Donaldson K, Proudfoot L et al (2008) The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacol 232:418–427CrossRef Clift MJD, Rothen-Rutishauser B, Brown DM, Duffin R, Donaldson K, Proudfoot L et al (2008) The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacol 232:418–427CrossRef
70.
Zurück zum Zitat Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P (1996) Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13:245–255CrossRef Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P (1996) Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13:245–255CrossRef
71.
Zurück zum Zitat Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318 Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318
72.
Zurück zum Zitat Lunov O, Syrovets T, Rocker C, Tron K, Nienhaus GU, Rasche V et al (2010) Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 31:9015–9022CrossRef Lunov O, Syrovets T, Rocker C, Tron K, Nienhaus GU, Rasche V et al (2010) Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 31:9015–9022CrossRef
73.
Zurück zum Zitat Ferguson RM, Khandhar AP, Arami H, Hua L, Hovorka O, Krishnan KM (2013) Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers. Biomed Eng 58:493–507CrossRef Ferguson RM, Khandhar AP, Arami H, Hua L, Hovorka O, Krishnan KM (2013) Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers. Biomed Eng 58:493–507CrossRef
74.
Zurück zum Zitat Kittel C (1949) Physical theory of ferromagnetic domains. Rev Modern Phys 21:541–589CrossRef Kittel C (1949) Physical theory of ferromagnetic domains. Rev Modern Phys 21:541–589CrossRef
75.
Zurück zum Zitat Krishnan KM, Pakhomov AB, Bao Y, Blomqvist P, Chun Y, Gonzales M et al (2006) Nanomagnetism and spin electronics: materials, microstructure and novel properties. J Mater Sci 41:793–815. doi:10.1007/s10853-006-6564-1 CrossRef Krishnan KM, Pakhomov AB, Bao Y, Blomqvist P, Chun Y, Gonzales M et al (2006) Nanomagnetism and spin electronics: materials, microstructure and novel properties. J Mater Sci 41:793–815. doi:10.​1007/​s10853-006-6564-1 CrossRef
76.
Zurück zum Zitat Frei SSEH, Treves D (1957) Critical size and nucleation field of ideal ferromagnetic particles. Phys Rev 106:446–455CrossRef Frei SSEH, Treves D (1957) Critical size and nucleation field of ideal ferromagnetic particles. Phys Rev 106:446–455CrossRef
77.
Zurück zum Zitat Puntes VF, Krishnan K, Alivisatos AP (2002) Synthesis of colloidal cobalt nanoparticles with controlled size and shapes. Top Catal 19:145–148CrossRef Puntes VF, Krishnan K, Alivisatos AP (2002) Synthesis of colloidal cobalt nanoparticles with controlled size and shapes. Top Catal 19:145–148CrossRef
78.
Zurück zum Zitat Bao YP, Beerman M, Pakhomov AB, Krishnan KM (2005) Controlled crystalline structure and surface stability of cobalt nanocrystals. J Phys Chem B 109:7220–7222CrossRef Bao YP, Beerman M, Pakhomov AB, Krishnan KM (2005) Controlled crystalline structure and surface stability of cobalt nanocrystals. J Phys Chem B 109:7220–7222CrossRef
79.
Zurück zum Zitat Bao Y, An W, Turner CH, Krishnan K (2009) The critical role of surfactants in the growth of cobalt nanoparticles. Langmuir 26:478–483CrossRef Bao Y, An W, Turner CH, Krishnan K (2009) The critical role of surfactants in the growth of cobalt nanoparticles. Langmuir 26:478–483CrossRef
80.
Zurück zum Zitat Carpenter EE (2001) Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater 225:17–20CrossRef Carpenter EE (2001) Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater 225:17–20CrossRef
81.
Zurück zum Zitat Guo DD, Wu CH, Li XM, Jiang H, Wang XM, Chen BA (2008) In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells. J Nanosci Nanotechnol 8:2301–2307CrossRef Guo DD, Wu CH, Li XM, Jiang H, Wang XM, Chen BA (2008) In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells. J Nanosci Nanotechnol 8:2301–2307CrossRef
82.
Zurück zum Zitat Bao Y, Pakhomov AB, Krishnan KM (2005) A general approach to synthesis of nanoparticles with controlled morphologies and magnetic properties. J Appl Phys 97:10J317 (3 pp) CrossRef Bao Y, Pakhomov AB, Krishnan KM (2005) A general approach to synthesis of nanoparticles with controlled morphologies and magnetic properties. J Appl Phys 97:10J317 (3 pp) CrossRef
83.
Zurück zum Zitat Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992CrossRef Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992CrossRef
84.
Zurück zum Zitat Joseyphus RJ, Shinoda K, Sato Y, Tohji K, Jeyadevan B (2008) Composition controlled synthesis of fcc-FePt nanoparticles using a modified polyol process. J Mater Sci 43:2402–2406. doi:10.1007/s10853-007-1951-9 CrossRef Joseyphus RJ, Shinoda K, Sato Y, Tohji K, Jeyadevan B (2008) Composition controlled synthesis of fcc-FePt nanoparticles using a modified polyol process. J Mater Sci 43:2402–2406. doi:10.​1007/​s10853-007-1951-9 CrossRef
85.
Zurück zum Zitat Wang HL, Zhang Y, Huang Y, Zeng Q, Hadjipanayis GC (2004) CoPt nanoparticles by chemical reduction. J Magn Magn Mater 272:E1279–E1280CrossRef Wang HL, Zhang Y, Huang Y, Zeng Q, Hadjipanayis GC (2004) CoPt nanoparticles by chemical reduction. J Magn Magn Mater 272:E1279–E1280CrossRef
86.
Zurück zum Zitat Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRef Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRef
87.
Zurück zum Zitat Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801CrossRef Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801CrossRef
88.
Zurück zum Zitat Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121:11595–11596CrossRef Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121:11595–11596CrossRef
89.
Zurück zum Zitat Xie J, Peng S, Brower N, Pourmand N, Wang SX, Sun SH (2006) One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure Appl Chem 78:1003–1014CrossRef Xie J, Peng S, Brower N, Pourmand N, Wang SX, Sun SH (2006) One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure Appl Chem 78:1003–1014CrossRef
90.
Zurück zum Zitat Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRef Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRef
91.
Zurück zum Zitat Yu WW, Falkner JC, Yavuz CT, Colvin VL (2004) Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem Commun 2306–2307 Yu WW, Falkner JC, Yavuz CT, Colvin VL (2004) Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem Commun 2306–2307
92.
Zurück zum Zitat Xu YL, Qin Y, Palchoudhury S, Bao YP (2011) Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27:8990–8997CrossRef Xu YL, Qin Y, Palchoudhury S, Bao YP (2011) Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27:8990–8997CrossRef
93.
Zurück zum Zitat Xu YL, Baiu DC, Sherwood JA, McElreath MR, Qin Y, Lackey KH et al (2014) Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles. J Mater Chem B 2:6198–6206CrossRef Xu YL, Baiu DC, Sherwood JA, McElreath MR, Qin Y, Lackey KH et al (2014) Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles. J Mater Chem B 2:6198–6206CrossRef
94.
Zurück zum Zitat Kim BH, Lee N, Kim H, An K, Park YI, Choi Y et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T-1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631CrossRef Kim BH, Lee N, Kim H, An K, Park YI, Choi Y et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T-1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631CrossRef
95.
Zurück zum Zitat Palchoudhury S, Xu YL, An W, Turner CH, Bao YP (2010) Platinum attachments on iron oxide nanoparticle surfaces. J Appl Phys 107:09B311 (3 pp) CrossRef Palchoudhury S, Xu YL, An W, Turner CH, Bao YP (2010) Platinum attachments on iron oxide nanoparticle surfaces. J Appl Phys 107:09B311 (3 pp) CrossRef
96.
Zurück zum Zitat Young AG, Al-Salim N, Green DP, McQuillan AJ (2008) Attenuated total reflection infrared studies of oleate and trioctylphosphine oxide ligand adsorption and exchange reactions on CdS quantum dot films. Langmuir 24:3841–3849CrossRef Young AG, Al-Salim N, Green DP, McQuillan AJ (2008) Attenuated total reflection infrared studies of oleate and trioctylphosphine oxide ligand adsorption and exchange reactions on CdS quantum dot films. Langmuir 24:3841–3849CrossRef
97.
Zurück zum Zitat Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM (2015) Nanoscale 7:11142–11154CrossRef Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM (2015) Nanoscale 7:11142–11154CrossRef
98.
Zurück zum Zitat Hai HT, Yang HT, Kura H, Hasegawa D, Ogata Y, Takahashi M et al (2010) Size control and characterization of wustite (core)/spinel (shell) nanocubes obtained by decomposition of iron oleate complex. J Colloid Interface Sci 346:37–42CrossRef Hai HT, Yang HT, Kura H, Hasegawa D, Ogata Y, Takahashi M et al (2010) Size control and characterization of wustite (core)/spinel (shell) nanocubes obtained by decomposition of iron oleate complex. J Colloid Interface Sci 346:37–42CrossRef
99.
Zurück zum Zitat Kovalenko MV, Bodnarchuk MI, Lechner RT, Hesser G, Schaffler F, Heiss W (2007) Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J Am Chem Soc 129:6352–6353CrossRef Kovalenko MV, Bodnarchuk MI, Lechner RT, Hesser G, Schaffler F, Heiss W (2007) Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J Am Chem Soc 129:6352–6353CrossRef
100.
Zurück zum Zitat Xu ZC, Shen CM, Tian YA, Shi XZ, Gao HJ (2010) Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor. Nanoscale 2:1027–1032CrossRef Xu ZC, Shen CM, Tian YA, Shi XZ, Gao HJ (2010) Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor. Nanoscale 2:1027–1032CrossRef
101.
Zurück zum Zitat Kim D, Park J, An K, Yang NK, Park JG, Hyeon T (2007) Synthesis of hollow iron nanoframes. J Am Chem Soc 129:5812–5813CrossRef Kim D, Park J, An K, Yang NK, Park JG, Hyeon T (2007) Synthesis of hollow iron nanoframes. J Am Chem Soc 129:5812–5813CrossRef
102.
Zurück zum Zitat Shavel A, Rodriguez-Gonzalez B, Spasova M, Farle M, Liz-Marzan LM (2007) Synthesis and characterization of iron/iron oxide core/shell nanocubes. Adv Funct Mater 17:3870–3876CrossRef Shavel A, Rodriguez-Gonzalez B, Spasova M, Farle M, Liz-Marzan LM (2007) Synthesis and characterization of iron/iron oxide core/shell nanocubes. Adv Funct Mater 17:3870–3876CrossRef
103.
Zurück zum Zitat Kwon SG, Piao Y, Park J, Angappane S, Jo Y, Hwang NM et al (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129:12571–12584CrossRef Kwon SG, Piao Y, Park J, Angappane S, Jo Y, Hwang NM et al (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129:12571–12584CrossRef
104.
Zurück zum Zitat Plate NA, Mamlykh AV, Uzhinova LD, Panov VP, Rozenfel’d MA (1989) Structure of the heparin macromonomer and features of its radical polymerization. Polym Sci USSR 31:220–226CrossRef Plate NA, Mamlykh AV, Uzhinova LD, Panov VP, Rozenfel’d MA (1989) Structure of the heparin macromonomer and features of its radical polymerization. Polym Sci USSR 31:220–226CrossRef
105.
Zurück zum Zitat Kwon KW, Lee BH, Shim M (2006) Structural evolution in metal oxide/semiconductor colloidal nanocrystal heterostructures. Chem Mater 18:6357–6363CrossRef Kwon KW, Lee BH, Shim M (2006) Structural evolution in metal oxide/semiconductor colloidal nanocrystal heterostructures. Chem Mater 18:6357–6363CrossRef
106.
Zurück zum Zitat Park JN, Zhang P, Hu YS, McFarland E (2010) Synthesis and characterization of sintering-resistant silica-encapsulated Fe3O4 magnetic nanoparticles active for oxidation and chemical looping combustion. Nanotechnology 21:225708 (8 pp) CrossRef Park JN, Zhang P, Hu YS, McFarland E (2010) Synthesis and characterization of sintering-resistant silica-encapsulated Fe3O4 magnetic nanoparticles active for oxidation and chemical looping combustion. Nanotechnology 21:225708 (8 pp) CrossRef
107.
Zurück zum Zitat Jia CJ, Sun LD, Luo F, Han XD, Heyderman LJ, Yan ZG et al (2008) Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J Am Chem Soc 130:16968–16977CrossRef Jia CJ, Sun LD, Luo F, Han XD, Heyderman LJ, Yan ZG et al (2008) Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J Am Chem Soc 130:16968–16977CrossRef
108.
Zurück zum Zitat Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305CrossRef Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305CrossRef
109.
Zurück zum Zitat Kachkachi H, Ezzir A, Nogues M, Tronc E (2000) Surface effects in nanoparticles: application to maghemite gamma-Fe2O3. Eur Phys J B 14:681–689CrossRef Kachkachi H, Ezzir A, Nogues M, Tronc E (2000) Surface effects in nanoparticles: application to maghemite gamma-Fe2O3. Eur Phys J B 14:681–689CrossRef
110.
Zurück zum Zitat Koseoglu Y, Kavas H, Aktas B (2006) Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles. Phys Status Solidi 203:1595–1601CrossRef Koseoglu Y, Kavas H, Aktas B (2006) Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles. Phys Status Solidi 203:1595–1601CrossRef
111.
Zurück zum Zitat Millan A, Urtizberea A, Silva NJO, Palacio F, Amaral VS, Snoeck E et al (2007) Surface effects in maghemite nanoparticles. J Magn Magn Mater 312:L5–L9CrossRef Millan A, Urtizberea A, Silva NJO, Palacio F, Amaral VS, Snoeck E et al (2007) Surface effects in maghemite nanoparticles. J Magn Magn Mater 312:L5–L9CrossRef
112.
Zurück zum Zitat Koseoglu Y, Kavas H (2008) Size and surface effects on magnetic properties of Fe3O4 nanoparticles. J Nanosci Nanotechnol 8:584–590CrossRef Koseoglu Y, Kavas H (2008) Size and surface effects on magnetic properties of Fe3O4 nanoparticles. J Nanosci Nanotechnol 8:584–590CrossRef
113.
Zurück zum Zitat Iglesias O, Labarta A (2001) Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations. Phys Rev B 63:184416 (19 pp) CrossRef Iglesias O, Labarta A (2001) Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations. Phys Rev B 63:184416 (19 pp) CrossRef
114.
Zurück zum Zitat Ding T, Song K, Clays K, Tung CH (2009) Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field. Adv Mater 21:1936–1940CrossRef Ding T, Song K, Clays K, Tung CH (2009) Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field. Adv Mater 21:1936–1940CrossRef
115.
Zurück zum Zitat Yamaki M, Higo J, Nagayama K (1995) Size-dependent separation of colloidal particles in 2-dimensional convective self-assembly. Langmuir 11:2975–2978CrossRef Yamaki M, Higo J, Nagayama K (1995) Size-dependent separation of colloidal particles in 2-dimensional convective self-assembly. Langmuir 11:2975–2978CrossRef
116.
Zurück zum Zitat Kim MH, Im SH, Park OO (2005) Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly. Adv Funct Mater 15:1329–1335CrossRef Kim MH, Im SH, Park OO (2005) Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly. Adv Funct Mater 15:1329–1335CrossRef
117.
Zurück zum Zitat Wen TL, Liang WK, Krishnan KM (2010) Coupling of blocking and melting in cobalt ferrofluids. J Appl Phys 107:09B501 (3 pp) Wen TL, Liang WK, Krishnan KM (2010) Coupling of blocking and melting in cobalt ferrofluids. J Appl Phys 107:09B501 (3 pp)
118.
Zurück zum Zitat Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1992) Mechanism of formation of 2 dimensional crystals from latex-particles on substrate. Langmuir 8:3183–3190CrossRef Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1992) Mechanism of formation of 2 dimensional crystals from latex-particles on substrate. Langmuir 8:3183–3190CrossRef
119.
Zurück zum Zitat Henzie J, Andrews SC, Ling XY, Li ZY, Yang PD (2013) Oriented assembly of polyhedral plasmonic nanoparticle clusters. Proc Natl Acad Sci USA 110:6640–6645CrossRef Henzie J, Andrews SC, Ling XY, Li ZY, Yang PD (2013) Oriented assembly of polyhedral plasmonic nanoparticle clusters. Proc Natl Acad Sci USA 110:6640–6645CrossRef
120.
Zurück zum Zitat Zhang JH, Li YF, Zhang XM, Yang B (2010) Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays. Adv Mater 22:4249–4269CrossRef Zhang JH, Li YF, Zhang XM, Yang B (2010) Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays. Adv Mater 22:4249–4269CrossRef
121.
Zurück zum Zitat Lalatonne Y, Richardi J, Pileni MP (2004) Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat Mater 3:121–125CrossRef Lalatonne Y, Richardi J, Pileni MP (2004) Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat Mater 3:121–125CrossRef
122.
123.
Zurück zum Zitat Jones MR, Macfarlane RJ, Prigodich AE, Patel PC, Mirkin CA (2011) Nanoparticle shape anisotropy dictates the collective behavior of surface-bound ligands. J Am Chem Soc 133:18865–18869CrossRef Jones MR, Macfarlane RJ, Prigodich AE, Patel PC, Mirkin CA (2011) Nanoparticle shape anisotropy dictates the collective behavior of surface-bound ligands. J Am Chem Soc 133:18865–18869CrossRef
124.
Zurück zum Zitat Wu LH, Jubert PO, Berman D, Imaino W, Nelson A, Zhu HY et al (2014) Monolayer assembly of ferrimagnetic Co x Fe3−x O4 nanocubes for magnetic recording. Nano Lett 14:3395–3399CrossRef Wu LH, Jubert PO, Berman D, Imaino W, Nelson A, Zhu HY et al (2014) Monolayer assembly of ferrimagnetic Co x Fe3−x O4 nanocubes for magnetic recording. Nano Lett 14:3395–3399CrossRef
125.
Zurück zum Zitat Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829CrossRef Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829CrossRef
126.
Zurück zum Zitat Yunker PJ, Still T, Lohr MA, Yodh AG (2011) Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476:308–311CrossRef Yunker PJ, Still T, Lohr MA, Yodh AG (2011) Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476:308–311CrossRef
127.
Zurück zum Zitat Damasceno PF, Engel M, Glotzer SC (2012) Predictive self-assembly of polyhedra into complex structures. Science 337:453–457CrossRef Damasceno PF, Engel M, Glotzer SC (2012) Predictive self-assembly of polyhedra into complex structures. Science 337:453–457CrossRef
128.
Zurück zum Zitat Mueggenburg KE, Lin XM, Goldsmith RH, Jaeger HM (2007) Elastic membranes of close-packed nanoparticle arrays. Nat Mater 6:656–660CrossRef Mueggenburg KE, Lin XM, Goldsmith RH, Jaeger HM (2007) Elastic membranes of close-packed nanoparticle arrays. Nat Mater 6:656–660CrossRef
129.
Zurück zum Zitat He JB, Kanjanaboos P, Frazer NL, Weis A, Lin XM, Jaeger HM (2010) Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes. Small 6:1449–1456CrossRef He JB, Kanjanaboos P, Frazer NL, Weis A, Lin XM, Jaeger HM (2010) Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes. Small 6:1449–1456CrossRef
130.
Zurück zum Zitat Kanjanaboos P, Joshi-Imre A, Lin XM, Jaeger HM (2011) Strain patterning and direct measurement of Poisson’s ratio in nanoparticle mono layer sheets. Nano Lett 11:2567–2571CrossRef Kanjanaboos P, Joshi-Imre A, Lin XM, Jaeger HM (2011) Strain patterning and direct measurement of Poisson’s ratio in nanoparticle mono layer sheets. Nano Lett 11:2567–2571CrossRef
131.
Zurück zum Zitat Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann Rev Mater Sci 30:545–610CrossRef Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann Rev Mater Sci 30:545–610CrossRef
132.
Zurück zum Zitat Singh A, Dickinson C, Ryan KM (2012) Insight into the 3D architecture and quasicrystal symmetry of multilayer nanorod assemblies from moire interference patterns. ACS Nano 6:3339–3345CrossRef Singh A, Dickinson C, Ryan KM (2012) Insight into the 3D architecture and quasicrystal symmetry of multilayer nanorod assemblies from moire interference patterns. ACS Nano 6:3339–3345CrossRef
133.
Zurück zum Zitat Puntes VF, Gorostiza P, Aruguete DM, Bastus NG, Alivisatos AP (2004) Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy. Nat Mater 3:263–268CrossRef Puntes VF, Gorostiza P, Aruguete DM, Bastus NG, Alivisatos AP (2004) Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy. Nat Mater 3:263–268CrossRef
134.
Zurück zum Zitat Yamamoto K, Hogg CR, Yamamuro S, Hirayama T, Majetich SA (2011) Dipolar ferromagnetic phase transition in Fe3O4 nanoparticle arrays observed by Lorentz microscopy and electron holography. Appl Phys Lett 98:072509 (3 pp) CrossRef Yamamoto K, Hogg CR, Yamamuro S, Hirayama T, Majetich SA (2011) Dipolar ferromagnetic phase transition in Fe3O4 nanoparticle arrays observed by Lorentz microscopy and electron holography. Appl Phys Lett 98:072509 (3 pp) CrossRef
135.
Zurück zum Zitat Wen TL, Booth RA, Majetich SA (2012) Ten-nanometer dense hole arrays generated by nanoparticle lithography. Nano Lett 12:5873–5878CrossRef Wen TL, Booth RA, Majetich SA (2012) Ten-nanometer dense hole arrays generated by nanoparticle lithography. Nano Lett 12:5873–5878CrossRef
136.
Zurück zum Zitat Claridge SA, Castleman AW, Khanna SN, Murray CB, Sen A, Weiss PS (2009) Cluster-assembled materials. ACS Nano 3:244–255CrossRef Claridge SA, Castleman AW, Khanna SN, Murray CB, Sen A, Weiss PS (2009) Cluster-assembled materials. ACS Nano 3:244–255CrossRef
137.
Zurück zum Zitat Lopes WA, Jaeger HM (2001) Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414:735–738CrossRef Lopes WA, Jaeger HM (2001) Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414:735–738CrossRef
138.
Zurück zum Zitat Alba M, Pazos-Perez N, Vaz B, Formentin P, Tebbe M, Correa-Duarte MA et al (2013) Macroscale plasmonic substrates for highly sensitive surface-enhanced raman scattering. Angew Chem Int Ed 52:6459–6463CrossRef Alba M, Pazos-Perez N, Vaz B, Formentin P, Tebbe M, Correa-Duarte MA et al (2013) Macroscale plasmonic substrates for highly sensitive surface-enhanced raman scattering. Angew Chem Int Ed 52:6459–6463CrossRef
139.
Zurück zum Zitat Wen TL, Krishnan KM (2011) Cobalt-based magnetic nanocomposites: fabrication, fundamentals and applications. J Phys D 44:393001 (24 pp) CrossRef Wen TL, Krishnan KM (2011) Cobalt-based magnetic nanocomposites: fabrication, fundamentals and applications. J Phys D 44:393001 (24 pp) CrossRef
140.
Zurück zum Zitat Wen TL, Krishnan KM (2011) Magnetic properties of Au-core-Co-shell nanoparticles. J Appl Phys 109:07B515 (3 pp) Wen TL, Krishnan KM (2011) Magnetic properties of Au-core-Co-shell nanoparticles. J Appl Phys 109:07B515 (3 pp)
141.
Zurück zum Zitat Wen TL, Krishnan KM (2010) Thermal stability and morphological transformations of Au-core-Co-shell nanocrucibles. J Phys Chem C 114:14838–14842CrossRef Wen TL, Krishnan KM (2010) Thermal stability and morphological transformations of Au-core-Co-shell nanocrucibles. J Phys Chem C 114:14838–14842CrossRef
142.
Zurück zum Zitat Wen TL, Liu D, Luscombe CK, Krishnan KM (2009) Granular magnetoresistance in cobalt/poly (3-hexylthiophene, 2, 5-diyl) hybrid thin films prepared by a wet chemical method. Appl Phys Lett 95:082509 (3 pp) CrossRef Wen TL, Liu D, Luscombe CK, Krishnan KM (2009) Granular magnetoresistance in cobalt/poly (3-hexylthiophene, 2, 5-diyl) hybrid thin films prepared by a wet chemical method. Appl Phys Lett 95:082509 (3 pp) CrossRef
143.
Zurück zum Zitat Situ SF, Samia ACS (2014) Highly efficient antibacterial iron oxide@carbon nanochains from wustite precursor nanoparticles. ACS Appl Mater Interface 6:20154–20163CrossRef Situ SF, Samia ACS (2014) Highly efficient antibacterial iron oxide@carbon nanochains from wustite precursor nanoparticles. ACS Appl Mater Interface 6:20154–20163CrossRef
144.
Zurück zum Zitat Lu F, Popa A, Zhou SW, Zhu JJ, Samia ACS (2013) Iron oxide-loaded hollow mesoporous silica nanocapsules for controlled drug release and hyperthermia. Chem Commun 49:11436–11438CrossRef Lu F, Popa A, Zhou SW, Zhu JJ, Samia ACS (2013) Iron oxide-loaded hollow mesoporous silica nanocapsules for controlled drug release and hyperthermia. Chem Commun 49:11436–11438CrossRef
145.
Zurück zum Zitat Filipcsei G, Csetneki I, Szilagyi A, Zrinyi M (2007) Magnetic field-responsive smart polymer composites. In: Abe A, Albertsson A-C, Coates GW, Genzer J, Kobayashi S, Lee K-S, Leibler L, Long TE, Möller M, Okay O, Percec V, Tang BZ, Terentjev EM, Vicent MJ, Voit B, Wiesner U, Zhang X (eds) Advances in polymer science, vol 206. Springer, Berlin, pp 137–189 Filipcsei G, Csetneki I, Szilagyi A, Zrinyi M (2007) Magnetic field-responsive smart polymer composites. In: Abe A, Albertsson A-C, Coates GW, Genzer J, Kobayashi S, Lee K-S, Leibler L, Long TE, Möller M, Okay O, Percec V, Tang BZ, Terentjev EM, Vicent MJ, Voit B, Wiesner U, Zhang X (eds) Advances in polymer science, vol 206. Springer, Berlin, pp 137–189
146.
Zurück zum Zitat Kumar UN, Kratz K, Wagermaier W, Behl M, Lendlein A (2010) Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J Mater Chem 20:3404–3415CrossRef Kumar UN, Kratz K, Wagermaier W, Behl M, Lendlein A (2010) Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J Mater Chem 20:3404–3415CrossRef
147.
Zurück zum Zitat Stepanov GV, Borin DY, Raikher YL, Melenev PV, Perov NS (2008) Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers. J Phys 20:204121 (6 pp) Stepanov GV, Borin DY, Raikher YL, Melenev PV, Perov NS (2008) Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers. J Phys 20:204121 (6 pp)
148.
Zurück zum Zitat Thévenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42:7099–7116CrossRef Thévenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42:7099–7116CrossRef
149.
Zurück zum Zitat Ding XB, Sun ZH, Wan GX, Jiang YY (1998) Preparation of thermosensitive magnetic particles by dispersion polymerization. React Funct Polym 38:11–15CrossRef Ding XB, Sun ZH, Wan GX, Jiang YY (1998) Preparation of thermosensitive magnetic particles by dispersion polymerization. React Funct Polym 38:11–15CrossRef
150.
Zurück zum Zitat Zrínyi M, Barsi L, Büki A (1996) Deformation of ferrogels induced by nonuniform magnetic fields. J Chem Phys 104:8750–8756CrossRef Zrínyi M, Barsi L, Büki A (1996) Deformation of ferrogels induced by nonuniform magnetic fields. J Chem Phys 104:8750–8756CrossRef
151.
Zurück zum Zitat Visakh PM, Thomas S, Chandra AK, Mathew AP (2013) Advances in elastomers II: composites and nanocomposites. Springer, Berlin Visakh PM, Thomas S, Chandra AK, Mathew AP (2013) Advances in elastomers II: composites and nanocomposites. Springer, Berlin
152.
Zurück zum Zitat Kost J, Langer R (2012) Responsive polymeric delivery systems. Adv Drug Deliv Rev 64:327–341CrossRef Kost J, Langer R (2012) Responsive polymeric delivery systems. Adv Drug Deliv Rev 64:327–341CrossRef
153.
Zurück zum Zitat Luo L-B, Yu S-H, Qian H-S, Gong J-Y (2006) Large scale synthesis of uniform silver@carbon rich composite (carbon and cross-linked PVA) sub-microcables by a facile green chemistry carbonization approach. Chem Commun 793–795 Luo L-B, Yu S-H, Qian H-S, Gong J-Y (2006) Large scale synthesis of uniform silver@carbon rich composite (carbon and cross-linked PVA) sub-microcables by a facile green chemistry carbonization approach. Chem Commun 793–795
154.
Zurück zum Zitat Jones CD, Lyon LA (2000) Synthesis and characterization of multiresponsive core–shell microgels. Macromolecules 33:8301–8306CrossRef Jones CD, Lyon LA (2000) Synthesis and characterization of multiresponsive core–shell microgels. Macromolecules 33:8301–8306CrossRef
155.
Zurück zum Zitat Zhou S, Chu B (1998) Synthesis and volume phase transition of poly(methacrylic acid- co-N-isopropylacrylamide) microgel particles in water. J Phys Chem B 102:1364–1371CrossRef Zhou S, Chu B (1998) Synthesis and volume phase transition of poly(methacrylic acid- co-N-isopropylacrylamide) microgel particles in water. J Phys Chem B 102:1364–1371CrossRef
156.
Zurück zum Zitat Galeotti F, Bertini F, Scavia G, Bolognesi A (2011) A controlled approach to iron oxide nanoparticles functionalization for magnetic polymer brushes. J Colloid Interface Sci 360:540–547CrossRef Galeotti F, Bertini F, Scavia G, Bolognesi A (2011) A controlled approach to iron oxide nanoparticles functionalization for magnetic polymer brushes. J Colloid Interface Sci 360:540–547CrossRef
157.
Zurück zum Zitat Li X, Liu Y, Xu Z, Yan H (2011) Preparation of magnetic microspheres with thiol-containing polymer brushes and immobilization of gold nanoparticles in the brush layer. Eur Polym J 47:1877–1884CrossRef Li X, Liu Y, Xu Z, Yan H (2011) Preparation of magnetic microspheres with thiol-containing polymer brushes and immobilization of gold nanoparticles in the brush layer. Eur Polym J 47:1877–1884CrossRef
158.
Zurück zum Zitat Liu B, Zhang D, Wang J, Chen C, Yang X, Li C (2013) Multilayer magnetic composite particles with functional polymer brushes as stabilizers for gold nanocolloids and their recyclable catalysis. J Phys Chem C 117:6363–6372CrossRef Liu B, Zhang D, Wang J, Chen C, Yang X, Li C (2013) Multilayer magnetic composite particles with functional polymer brushes as stabilizers for gold nanocolloids and their recyclable catalysis. J Phys Chem C 117:6363–6372CrossRef
159.
Zurück zum Zitat Xu F, Geiger JH, Baker GL, Bruening ML (2011) Polymer brush-modified magnetic nanoparticles for His-tagged protein purification. Langmuir 27:3106–3112CrossRef Xu F, Geiger JH, Baker GL, Bruening ML (2011) Polymer brush-modified magnetic nanoparticles for His-tagged protein purification. Langmuir 27:3106–3112CrossRef
160.
Zurück zum Zitat Ranjan R, Brittain WJ (2007) Combination of living radical [polymerization and click chemistry for surface modification. Macromolecules 40:6217–6223CrossRef Ranjan R, Brittain WJ (2007) Combination of living radical [polymerization and click chemistry for surface modification. Macromolecules 40:6217–6223CrossRef
161.
Zurück zum Zitat Schmidt AM (2005) The synthesis of magnetic core-shell nanoparticles by surface-initiated ring-opening polymerization of e-caprolactone. Macromol Rapid Commun 26:93–97CrossRef Schmidt AM (2005) The synthesis of magnetic core-shell nanoparticles by surface-initiated ring-opening polymerization of e-caprolactone. Macromol Rapid Commun 26:93–97CrossRef
162.
Zurück zum Zitat Moraes J, Ohno K, Maschmeyer T, Perrier S (2013) Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization. Chem Commun 49:9077–9088CrossRef Moraes J, Ohno K, Maschmeyer T, Perrier S (2013) Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization. Chem Commun 49:9077–9088CrossRef
163.
Zurück zum Zitat Vestal CR, Zhang ZJ (2002) Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. J Am Chem Soc 124:14312–14313CrossRef Vestal CR, Zhang ZJ (2002) Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. J Am Chem Soc 124:14312–14313CrossRef
164.
Zurück zum Zitat Wang Y, Teng X, Wang J-S, Yang H (2003) Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3 @polystyrene core–shell nanoparticles. Nano Lett 3:789–793CrossRef Wang Y, Teng X, Wang J-S, Yang H (2003) Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3 @polystyrene core–shell nanoparticles. Nano Lett 3:789–793CrossRef
165.
Zurück zum Zitat Achilleos DS, Vamvakaki M (2010) End-grafted polymer chains onto inorganic nano-objects. Materials 3:1981–2026CrossRef Achilleos DS, Vamvakaki M (2010) End-grafted polymer chains onto inorganic nano-objects. Materials 3:1981–2026CrossRef
166.
Zurück zum Zitat Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS et al (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430CrossRef Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS et al (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430CrossRef
167.
Zurück zum Zitat Kloust H, Pöselt E, Kappen S, Schmidtke C, Kornowski A, Pauer W et al (2012) Ultrasmall biocompatible nanocomposites: a new approach using seeded emulsion polymerization for the encapsulation of nanocrystals. Langmuir 28:7276–7281CrossRef Kloust H, Pöselt E, Kappen S, Schmidtke C, Kornowski A, Pauer W et al (2012) Ultrasmall biocompatible nanocomposites: a new approach using seeded emulsion polymerization for the encapsulation of nanocrystals. Langmuir 28:7276–7281CrossRef
168.
Zurück zum Zitat Chern CS (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31:443–486CrossRef Chern CS (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31:443–486CrossRef
169.
Zurück zum Zitat Keng PY, Bull MM, Shim I-B, Nebesny KG, Armstrong NR, Sung Y et al (2011) Colloidal polymerization of polymer-coated ferromagnetic cobalt nanoparticles into Pt-Co3O4 nanowires. Chem Mater 23:1120–1129CrossRef Keng PY, Bull MM, Shim I-B, Nebesny KG, Armstrong NR, Sung Y et al (2011) Colloidal polymerization of polymer-coated ferromagnetic cobalt nanoparticles into Pt-Co3O4 nanowires. Chem Mater 23:1120–1129CrossRef
170.
Zurück zum Zitat Cuppoletti J (2011) Metal, ceramic and polymeric composites for various uses. InTech, chap 25 Cuppoletti J (2011) Metal, ceramic and polymeric composites for various uses. InTech, chap 25
171.
Zurück zum Zitat Tanahashi M (2010) Development of fabrication methods of filler/polymer nanocomposites: with focus on simple melt-compounding-based approach without surface modification of nanofillers. Materials 3:1593–1619CrossRef Tanahashi M (2010) Development of fabrication methods of filler/polymer nanocomposites: with focus on simple melt-compounding-based approach without surface modification of nanofillers. Materials 3:1593–1619CrossRef
172.
Zurück zum Zitat Yang T-I, Brown RNC, Kempel LC, Kofinas P (2008) Magneto-dielectric properties of polymer—Fe3O4 nanocomposites. J Magn Magn Mater 320:2714–2720CrossRef Yang T-I, Brown RNC, Kempel LC, Kofinas P (2008) Magneto-dielectric properties of polymer—Fe3O4 nanocomposites. J Magn Magn Mater 320:2714–2720CrossRef
173.
Zurück zum Zitat Wang D, Wang K, Xu W (2013) Novel fabrication of magnetic thermoplastic nanofibers via melt extrusion of immiscible blends. Polym Adv Technol 24:70–74CrossRef Wang D, Wang K, Xu W (2013) Novel fabrication of magnetic thermoplastic nanofibers via melt extrusion of immiscible blends. Polym Adv Technol 24:70–74CrossRef
174.
Zurück zum Zitat Bin Y, Yamanaka A, Chen QY, Xi Y, Jiang XW, Matsuo M (2007) Morphological, electrical and mechanical properties of ultrahigh molecular weight polyethylene and multi-wall carbon nanotube composites prepared in decalin and paraffin. Polym J 39:598–609CrossRef Bin Y, Yamanaka A, Chen QY, Xi Y, Jiang XW, Matsuo M (2007) Morphological, electrical and mechanical properties of ultrahigh molecular weight polyethylene and multi-wall carbon nanotube composites prepared in decalin and paraffin. Polym J 39:598–609CrossRef
175.
Zurück zum Zitat Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K (2001) Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42:3301–3304CrossRef Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K (2001) Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42:3301–3304CrossRef
176.
Zurück zum Zitat Pan G, Guo Q, Tian A, He Z (2008) Mechanical behaviors of Al2O3 nanoparticles reinforced polyetheretherketone. Mater Sci Eng A 492:383–391CrossRef Pan G, Guo Q, Tian A, He Z (2008) Mechanical behaviors of Al2O3 nanoparticles reinforced polyetheretherketone. Mater Sci Eng A 492:383–391CrossRef
177.
Zurück zum Zitat Pablico-Lansigan MH, Situ SF, Samia ACS (2013) Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 5:4040–4055CrossRef Pablico-Lansigan MH, Situ SF, Samia ACS (2013) Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 5:4040–4055CrossRef
178.
Zurück zum Zitat Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic Press, San Diego Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic Press, San Diego
179.
Zurück zum Zitat Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431–432CrossRef Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431–432CrossRef
180.
Zurück zum Zitat Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430CrossRef Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430CrossRef
181.
Zurück zum Zitat Stuart BH (2004) Infrared spectroscopy [electronic resource]: fundamentals and applications. Wiley, HobokenCrossRef Stuart BH (2004) Infrared spectroscopy [electronic resource]: fundamentals and applications. Wiley, HobokenCrossRef
182.
Zurück zum Zitat Wang XY, Jin BK, Lin XQ (2002) In-situ FTIR spectroelectrochemical study of dopamine at a glassy carbon electrode in a neutral solution. Anal Sci 18:931–933CrossRef Wang XY, Jin BK, Lin XQ (2002) In-situ FTIR spectroelectrochemical study of dopamine at a glassy carbon electrode in a neutral solution. Anal Sci 18:931–933CrossRef
183.
Zurück zum Zitat Modak S, Cheung NK (2007) Disialoganglioside directed immunotherapy of neuroblastoma. Cancer Investig 25:67–77CrossRef Modak S, Cheung NK (2007) Disialoganglioside directed immunotherapy of neuroblastoma. Cancer Investig 25:67–77CrossRef
184.
Zurück zum Zitat Yoshida S, Fukumoto S, Kawaguchi H, Sato S, Ueda R, Furukawa K (2001) Ganglioside G(D2) in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis. Cancer Res 61:4244–4252 Yoshida S, Fukumoto S, Kawaguchi H, Sato S, Ueda R, Furukawa K (2001) Ganglioside G(D2) in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis. Cancer Res 61:4244–4252
185.
Zurück zum Zitat Jiao P, Zhou H, Otto M, Mu Q, Li L, Su G et al (2011) Leading neuroblastoma cells to die by multiple premeditated attacks from a multifunctionalized nanoconstruct. J Am Chem Soc 133:13918–13921CrossRef Jiao P, Zhou H, Otto M, Mu Q, Li L, Su G et al (2011) Leading neuroblastoma cells to die by multiple premeditated attacks from a multifunctionalized nanoconstruct. J Am Chem Soc 133:13918–13921CrossRef
186.
Zurück zum Zitat Ross CA, Smith HI, Savas T, Schattenburg M, Farhoud M, Hwang M et al (1999) Fabrication of patterned media for high density magnetic storage. J Vac Sci Technol B 17:3168–3176CrossRef Ross CA, Smith HI, Savas T, Schattenburg M, Farhoud M, Hwang M et al (1999) Fabrication of patterned media for high density magnetic storage. J Vac Sci Technol B 17:3168–3176CrossRef
187.
Zurück zum Zitat Albrecht TR, Bedau D, Dobisz E, Gao H, Grobis M, Hellwig O et al (2013) Bit patterned media at 1 Tdot/in(2) and beyond. IEEE Trans Magn 49:773–778CrossRef Albrecht TR, Bedau D, Dobisz E, Gao H, Grobis M, Hellwig O et al (2013) Bit patterned media at 1 Tdot/in(2) and beyond. IEEE Trans Magn 49:773–778CrossRef
188.
Zurück zum Zitat Kikitsu A, Maeda T, Hieda H, Yamamoto R, Kihara N, Kamata Y (2013) 5 Tdots/in(2) bit patterned media fabricated by a directed self-assembly mask. IEEE Trans Magn 49:693–698CrossRef Kikitsu A, Maeda T, Hieda H, Yamamoto R, Kihara N, Kamata Y (2013) 5 Tdots/in(2) bit patterned media fabricated by a directed self-assembly mask. IEEE Trans Magn 49:693–698CrossRef
189.
Zurück zum Zitat Terris BD, Thomson T (2005) Nanofabricated and self-assembled magnetic structures as data storage media. J Phys D 38:R199–R222CrossRef Terris BD, Thomson T (2005) Nanofabricated and self-assembled magnetic structures as data storage media. J Phys D 38:R199–R222CrossRef
190.
Zurück zum Zitat Broers AN, Hoole ACF, Ryan JM (1996) Electron beam lithography—resolution limits. Microelectron Eng 32:131–142CrossRef Broers AN, Hoole ACF, Ryan JM (1996) Electron beam lithography—resolution limits. Microelectron Eng 32:131–142CrossRef
191.
Zurück zum Zitat Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A et al (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164:111–117CrossRef Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A et al (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164:111–117CrossRef
192.
Zurück zum Zitat Tseng AA, Chen K, Chen CD, Ma KJ (2003) Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans Electron Packag Manuf 26:141–149CrossRef Tseng AA, Chen K, Chen CD, Ma KJ (2003) Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans Electron Packag Manuf 26:141–149CrossRef
193.
Zurück zum Zitat Park M, Harrison C, Chaikin PM, Register RA, Adamson DH (1997) Block copolymer lithography: periodic arrays of similar to 10(11) holes in 1 square centimeter. Science 276:1401–1404CrossRef Park M, Harrison C, Chaikin PM, Register RA, Adamson DH (1997) Block copolymer lithography: periodic arrays of similar to 10(11) holes in 1 square centimeter. Science 276:1401–1404CrossRef
194.
Zurück zum Zitat Ruiz R, Kang HM, Detcheverry FA, Dobisz E, Kercher DS, Albrecht TR et al (2008) Density multiplication and improved lithography by directed block copolymer assembly. Science 321:936–939CrossRef Ruiz R, Kang HM, Detcheverry FA, Dobisz E, Kercher DS, Albrecht TR et al (2008) Density multiplication and improved lithography by directed block copolymer assembly. Science 321:936–939CrossRef
195.
Zurück zum Zitat Fasolka MJ, Mayes AM (2001) Block copolymer thin films: physics and applications. Ann Rev Mater Res 31:323–355CrossRef Fasolka MJ, Mayes AM (2001) Block copolymer thin films: physics and applications. Ann Rev Mater Res 31:323–355CrossRef
196.
Zurück zum Zitat Stoykovich MP, Nealey PF (2006) Block copolymers and conventional lithography. Mater Today 9:20–29CrossRef Stoykovich MP, Nealey PF (2006) Block copolymers and conventional lithography. Mater Today 9:20–29CrossRef
197.
Zurück zum Zitat Hogg CR, Majetich SA, Bain JA (2010) Investigating pattern transfer in the small-gap regime using electron-beam stabilized nanoparticle array etch masks. IEEE Trans Magn 46:2307–2310CrossRef Hogg CR, Majetich SA, Bain JA (2010) Investigating pattern transfer in the small-gap regime using electron-beam stabilized nanoparticle array etch masks. IEEE Trans Magn 46:2307–2310CrossRef
198.
Zurück zum Zitat Keil D, Anderson E (2001) Characterization of reactive ion etch lag scaling. J Vac Sci Technol B 19:2082–2088CrossRef Keil D, Anderson E (2001) Characterization of reactive ion etch lag scaling. J Vac Sci Technol B 19:2082–2088CrossRef
199.
Zurück zum Zitat Seshadri K, Froyd K, Parikh AN, Allara DL, Lercel MJ, Craighead HG (1996) Electron-beam-induced damage in self-assembled monolayers. J Phys Chem 100:15900–15909CrossRef Seshadri K, Froyd K, Parikh AN, Allara DL, Lercel MJ, Craighead HG (1996) Electron-beam-induced damage in self-assembled monolayers. J Phys Chem 100:15900–15909CrossRef
200.
Zurück zum Zitat Lercel MJ, Rooks M, Tiberio RC, Craighead HG, Sheen CW, Parikh AN et al (1995) Pattern transfer of electron-beam modified self-assembled monolayers for high-resolution lithography. J Vac Sci Technol B 13:1139–1143CrossRef Lercel MJ, Rooks M, Tiberio RC, Craighead HG, Sheen CW, Parikh AN et al (1995) Pattern transfer of electron-beam modified self-assembled monolayers for high-resolution lithography. J Vac Sci Technol B 13:1139–1143CrossRef
201.
Zurück zum Zitat Balachova OV, Alves MAR, Swart JW, Braga ES, Cescato L (2000) CF4 plasma etching of materials used in microelectronics manufacturing. Microelectron J 31:213–215CrossRef Balachova OV, Alves MAR, Swart JW, Braga ES, Cescato L (2000) CF4 plasma etching of materials used in microelectronics manufacturing. Microelectron J 31:213–215CrossRef
202.
Zurück zum Zitat Cao G, Wang Y (2011) Nanostructures & nanomaterials : synthesis, properties, and applications, 2nd edn. World Scientific, New JerseyCrossRef Cao G, Wang Y (2011) Nanostructures & nanomaterials : synthesis, properties, and applications, 2nd edn. World Scientific, New JerseyCrossRef
203.
Zurück zum Zitat Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090CrossRef Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090CrossRef
204.
Zurück zum Zitat Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217CrossRef Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217CrossRef
205.
Zurück zum Zitat Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J (2009) Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54:L1–L10CrossRef Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J (2009) Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54:L1–L10CrossRef
206.
Zurück zum Zitat Sattel TF, Knopp T, Biederer S, Gleich B, Weizenecker J, Borgert J et al (2009) Single-sided device for magnetic particle imaging. J Phys D 42:022001–022005CrossRef Sattel TF, Knopp T, Biederer S, Gleich B, Weizenecker J, Borgert J et al (2009) Single-sided device for magnetic particle imaging. J Phys D 42:022001–022005CrossRef
207.
Zurück zum Zitat Weizenecker J, Borgert J, Gleich B (2007) A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys Med Biol 52:6363–6374CrossRef Weizenecker J, Borgert J, Gleich B (2007) A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys Med Biol 52:6363–6374CrossRef
208.
Zurück zum Zitat Goodwill PW, Scott GC, Stang PP, Conolly SM (2009) Narrowband magnetic particle imaging. IEEE Trans Med Imaging 28:231–1237CrossRef Goodwill PW, Scott GC, Stang PP, Conolly SM (2009) Narrowband magnetic particle imaging. IEEE Trans Med Imaging 28:231–1237CrossRef
209.
Zurück zum Zitat Goodwill PW, Conolly SM (2010) The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging 29:851–1859CrossRef Goodwill PW, Conolly SM (2010) The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging 29:851–1859CrossRef
210.
Zurück zum Zitat Ferguson RM, Minard KR, Khandhar AP, Krishnan KM (2011) Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys 38:1619–1626CrossRef Ferguson RM, Minard KR, Khandhar AP, Krishnan KM (2011) Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys 38:1619–1626CrossRef
211.
Zurück zum Zitat Ferguson RM, Minard KR, Krishnan KM (2009) Optimization of nanoparticle core size for magnetic particle imaging. J Magn Magn Mater 321:1548–1551CrossRef Ferguson RM, Minard KR, Krishnan KM (2009) Optimization of nanoparticle core size for magnetic particle imaging. J Magn Magn Mater 321:1548–1551CrossRef
212.
Zurück zum Zitat Ferguson RM, Khandhar AP, Krishnan KM (2012) Tracer design for magnetic particle imaging. J Appl Phys 111:07B3181–07B3185CrossRef Ferguson RM, Khandhar AP, Krishnan KM (2012) Tracer design for magnetic particle imaging. J Appl Phys 111:07B3181–07B3185CrossRef
213.
Zurück zum Zitat Goodwill PW, Conolly SM (2011) Experimental demonstration of X-space magnetic particle imaging. Proc SPIE7 965:79650U1–79650U6 Goodwill PW, Conolly SM (2011) Experimental demonstration of X-space magnetic particle imaging. Proc SPIE7 965:79650U1–79650U6
214.
Zurück zum Zitat Lüdtke-Buzug K, Rapoport DH, Schneider D. Presented at the 8th international conference on the scientific and clincal applications of magnetic carriers, Rostock, Germany, 2010 Lüdtke-Buzug K, Rapoport DH, Schneider D. Presented at the 8th international conference on the scientific and clincal applications of magnetic carriers, Rostock, Germany, 2010
215.
Zurück zum Zitat Knopp T, Buzug TM (2012) Magnetic particle imaging: an introduction to imaging principles and scanner instrumentation. Spinger, BerlinCrossRef Knopp T, Buzug TM (2012) Magnetic particle imaging: an introduction to imaging principles and scanner instrumentation. Spinger, BerlinCrossRef
216.
Zurück zum Zitat Bulte JW, Gleich B, Weizenecker J, Bernard S, Walczak P, Markov DE et al (2008) Developing cellular MPI: initial experience. Proc Intl Soc Mag Reson Med 16:201–204 Bulte JW, Gleich B, Weizenecker J, Bernard S, Walczak P, Markov DE et al (2008) Developing cellular MPI: initial experience. Proc Intl Soc Mag Reson Med 16:201–204
217.
Zurück zum Zitat Markov DE, Boeve H, Gleich B, Borgert J, Antonelli A, Sfara C et al (2010) Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol 55:6461–6473CrossRef Markov DE, Boeve H, Gleich B, Borgert J, Antonelli A, Sfara C et al (2010) Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol 55:6461–6473CrossRef
218.
Zurück zum Zitat Gilchris RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606CrossRef Gilchris RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606CrossRef
219.
Zurück zum Zitat Meyers PH, Cronic F, NIice CM (1963) Experimental approach in the use and magnetic control of metallic iron particles in the lymphatic and vascular system of dogs as a contrast and isotopic agent. Am J Roentgenol Radium Therapy Nucl Med 90:1068–1077 Meyers PH, Cronic F, NIice CM (1963) Experimental approach in the use and magnetic control of metallic iron particles in the lymphatic and vascular system of dogs as a contrast and isotopic agent. Am J Roentgenol Radium Therapy Nucl Med 90:1068–1077
220.
Zurück zum Zitat Häfeli UO (2004) Magnetically modulated therapeutic systems. Int J Pharm 277:19–24CrossRef Häfeli UO (2004) Magnetically modulated therapeutic systems. Int J Pharm 277:19–24CrossRef
221.
Zurück zum Zitat Barakat NS (2009) Magnetically modulated nanosystems: a unique drug-delivery platform. Nanomedicine 4:799–812CrossRef Barakat NS (2009) Magnetically modulated nanosystems: a unique drug-delivery platform. Nanomedicine 4:799–812CrossRef
222.
Zurück zum Zitat McBain SC, Yiu HHP, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomed 3:169–180 McBain SC, Yiu HHP, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomed 3:169–180
223.
Zurück zum Zitat Lee J-H, Kim J-W, Cheon J (2013) Magnetic nanoparticles for multi-imaging and drug delivery. Mol Cells 35:274–284CrossRef Lee J-H, Kim J-W, Cheon J (2013) Magnetic nanoparticles for multi-imaging and drug delivery. Mol Cells 35:274–284CrossRef
224.
Zurück zum Zitat Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288CrossRef Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288CrossRef
225.
Zurück zum Zitat Wang LY, Luo J, Fan Q, Suzuki M, Suzuki IS, Engelhard MH et al (2005) Monodispersed core-shell Fe3O4@Au nanoparticles. J Phys Chem B 109:21593–21601CrossRef Wang LY, Luo J, Fan Q, Suzuki M, Suzuki IS, Engelhard MH et al (2005) Monodispersed core-shell Fe3O4@Au nanoparticles. J Phys Chem B 109:21593–21601CrossRef
226.
Zurück zum Zitat Grumezescu AM (2015) Biocompatible magnetic hollow silica microspheres for drug delivery. Curr Org Chem 17:1029–1033CrossRef Grumezescu AM (2015) Biocompatible magnetic hollow silica microspheres for drug delivery. Curr Org Chem 17:1029–1033CrossRef
227.
Zurück zum Zitat Márquez F, Herrera GM, Campo T, Cotto M, Ducongé J, Sanz JM et al (2012) Preparation of hollow magnetite microspheres and their applications as drugs carriers. Nanoscale Res Lett 7:210 (11 pp) CrossRef Márquez F, Herrera GM, Campo T, Cotto M, Ducongé J, Sanz JM et al (2012) Preparation of hollow magnetite microspheres and their applications as drugs carriers. Nanoscale Res Lett 7:210 (11 pp) CrossRef
228.
Zurück zum Zitat Fuchigami T, Kawamura R, Kitamoto Y, Nakagawa M, Namiki Y (2012) A magnetically guided anti-cancer drug delivery system using porous FePt capsules. Biomaterials 33:1682–1687CrossRef Fuchigami T, Kawamura R, Kitamoto Y, Nakagawa M, Namiki Y (2012) A magnetically guided anti-cancer drug delivery system using porous FePt capsules. Biomaterials 33:1682–1687CrossRef
229.
Zurück zum Zitat Chen ML, He YJ, Chen XW, Wang JH (2012) Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir 28:16469–16476CrossRef Chen ML, He YJ, Chen XW, Wang JH (2012) Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir 28:16469–16476CrossRef
230.
Zurück zum Zitat Masotti A, Caporali A (2013) Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications. Int J Mol Sci 14:24619–24642CrossRef Masotti A, Caporali A (2013) Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications. Int J Mol Sci 14:24619–24642CrossRef
231.
Zurück zum Zitat Mashhadizadeh MH, Amoli-Diva M (2012) Drug-carrying amino silane coated magnetic nanoparticles as potential vehicles for delivery of antibiotics. J Nanomed Nanotechnol 3:1000139 (7 pp) CrossRef Mashhadizadeh MH, Amoli-Diva M (2012) Drug-carrying amino silane coated magnetic nanoparticles as potential vehicles for delivery of antibiotics. J Nanomed Nanotechnol 3:1000139 (7 pp) CrossRef
232.
Zurück zum Zitat Häfeli UO, Sweeney SM, Beresford BA, Humm JL, Macklis RM (1995) Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl Med Biol 22:147–155CrossRef Häfeli UO, Sweeney SM, Beresford BA, Humm JL, Macklis RM (1995) Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl Med Biol 22:147–155CrossRef
233.
Zurück zum Zitat Edelman ER, Langer R (1993) Optimization of release from magnetically controlled polymeric drug release devices. Biomaterials 14:621–626CrossRef Edelman ER, Langer R (1993) Optimization of release from magnetically controlled polymeric drug release devices. Biomaterials 14:621–626CrossRef
234.
Zurück zum Zitat Chen H, Langer R (1997) Magnetically-responsive polymerized liposomes as potential oral delivery vehicles. Pharm Res 14:537–540CrossRef Chen H, Langer R (1997) Magnetically-responsive polymerized liposomes as potential oral delivery vehicles. Pharm Res 14:537–540CrossRef
235.
Zurück zum Zitat Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29:4012–4021CrossRef Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29:4012–4021CrossRef
236.
Zurück zum Zitat Lim EK, Huh YM, Yang J, Lee K, Suh JS, Haam S (2011) pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater 23:2436–2442CrossRef Lim EK, Huh YM, Yang J, Lee K, Suh JS, Haam S (2011) pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater 23:2436–2442CrossRef
237.
Zurück zum Zitat Terreno E, Castelli DD, Viale A, Aime S (2010) Challenges for molecular magnetic resonance imaging. Chem Rev 110:3019–3042CrossRef Terreno E, Castelli DD, Viale A, Aime S (2010) Challenges for molecular magnetic resonance imaging. Chem Rev 110:3019–3042CrossRef
238.
Zurück zum Zitat Waters EA, Wickline SA (2008) Contrast agents for MRI. Basic Res Cardiol 103:114–121CrossRef Waters EA, Wickline SA (2008) Contrast agents for MRI. Basic Res Cardiol 103:114–121CrossRef
239.
Zurück zum Zitat Strijkers GJ, Mulder WJM, van Tilborg GAF, Nicolay K (2007) MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem 7:291–305CrossRef Strijkers GJ, Mulder WJM, van Tilborg GAF, Nicolay K (2007) MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem 7:291–305CrossRef
240.
Zurück zum Zitat Advanced Magnetics (1996) FDA approval for Feridex iv liver contrast agent. Drug News Persp 9:422–422 Advanced Magnetics (1996) FDA approval for Feridex iv liver contrast agent. Drug News Persp 9:422–422
241.
Zurück zum Zitat Hamm B, Staks T, Tapuitz M, Maibauer R, Speidel A, Huppertz A et al (1994) Contrast-enhanced MR-imaging of liver and spleen—1st experience in humans with a new superparamagnetic iron oxide. J Magn Res Imaging 4:659–668CrossRef Hamm B, Staks T, Tapuitz M, Maibauer R, Speidel A, Huppertz A et al (1994) Contrast-enhanced MR-imaging of liver and spleen—1st experience in humans with a new superparamagnetic iron oxide. J Magn Res Imaging 4:659–668CrossRef
242.
Zurück zum Zitat Baiu DC, Brazel C, Bao Y, Otto M (2013) Interactions of iron oxide nanoparticles with the immune system: challenges and opportunities for their use in nano-oncology. Curr Pharm Des 19:6606–6621CrossRef Baiu DC, Brazel C, Bao Y, Otto M (2013) Interactions of iron oxide nanoparticles with the immune system: challenges and opportunities for their use in nano-oncology. Curr Pharm Des 19:6606–6621CrossRef
243.
Zurück zum Zitat Brisset JC, Sigovan M, Chauveau F, Riou A, Devillard E, Desestret V et al (2011) Quantification of iron-labeled cells with positive contrast in mouse brains. Mol Imaging Biol 13:672–678CrossRef Brisset JC, Sigovan M, Chauveau F, Riou A, Devillard E, Desestret V et al (2011) Quantification of iron-labeled cells with positive contrast in mouse brains. Mol Imaging Biol 13:672–678CrossRef
244.
Zurück zum Zitat Okuhata Y (1999) Delivery of diagnostic agents for magnetic resonance imaging. Adv Drug Deliv Rev 37:121–137CrossRef Okuhata Y (1999) Delivery of diagnostic agents for magnetic resonance imaging. Adv Drug Deliv Rev 37:121–137CrossRef
245.
Zurück zum Zitat Hasebroock KM, Serkova NJ (2009) Toxicity of MRI and CT contrast agents. Exp Opin Drug Metabol Toxicol 5:403–416CrossRef Hasebroock KM, Serkova NJ (2009) Toxicity of MRI and CT contrast agents. Exp Opin Drug Metabol Toxicol 5:403–416CrossRef
246.
Zurück zum Zitat Lin CH, Cai SH, Feng JH (2012) Positive contrast imaging of SPIO nanoparticles. J Nanomater 2012:734842 (7 pp) Lin CH, Cai SH, Feng JH (2012) Positive contrast imaging of SPIO nanoparticles. J Nanomater 2012:734842 (7 pp)
247.
Zurück zum Zitat Eibofner F, Steidle G, Kehlbach R, Bantleon R, Schick F (2010) Positive contrast imaging of iron oxide nanoparticles with susceptibility-weighted imaging. Magn Reson Med 64:1027–1038CrossRef Eibofner F, Steidle G, Kehlbach R, Bantleon R, Schick F (2010) Positive contrast imaging of iron oxide nanoparticles with susceptibility-weighted imaging. Magn Reson Med 64:1027–1038CrossRef
248.
Zurück zum Zitat Zhu HT, Demachi K, Sekino M (2011) Phase gradient imaging for positive contrast generation to superparamagnetic iron oxide nanoparticle-labeled targets in magnetic resonance imaging. Magn Reson Med 29:891–898 Zhu HT, Demachi K, Sekino M (2011) Phase gradient imaging for positive contrast generation to superparamagnetic iron oxide nanoparticle-labeled targets in magnetic resonance imaging. Magn Reson Med 29:891–898
249.
Zurück zum Zitat Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H (2009) A highly effective, nontoxic T-1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9:4434–4440CrossRef Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H (2009) A highly effective, nontoxic T-1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9:4434–4440CrossRef
250.
Zurück zum Zitat Park JY, Choi ES, Baek MJ, Lee GH, Woo S, Chang Y (2009) Water-soluble ultra small paramagnetic or superparamagnetic metal oxide nanoparticles for molecular MR imaging. Eur J Inorg Chem 2009:2477–2481CrossRef Park JY, Choi ES, Baek MJ, Lee GH, Woo S, Chang Y (2009) Water-soluble ultra small paramagnetic or superparamagnetic metal oxide nanoparticles for molecular MR imaging. Eur J Inorg Chem 2009:2477–2481CrossRef
251.
Zurück zum Zitat Taboada E, Rodriguez E, Roig A, Oro J, Roch A, Muller RN (2007) Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T-1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 23:4583–4588CrossRef Taboada E, Rodriguez E, Roig A, Oro J, Roch A, Muller RN (2007) Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T-1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 23:4583–4588CrossRef
252.
Zurück zum Zitat Li Z, Yi PW, Sun Q, Lei H, Zhao HL, Zhu ZH et al (2012) Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv Funct Mater 22:2387–2393CrossRef Li Z, Yi PW, Sun Q, Lei H, Zhao HL, Zhu ZH et al (2012) Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv Funct Mater 22:2387–2393CrossRef
253.
Zurück zum Zitat Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703–717CrossRef Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703–717CrossRef
254.
Zurück zum Zitat Prakash A, Zhu HG, Jones CJ, Benoit DN, Ellsworth AZ, Bryant EL et al (2009) Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents. ACS Nano 3:2139–2146CrossRef Prakash A, Zhu HG, Jones CJ, Benoit DN, Ellsworth AZ, Bryant EL et al (2009) Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents. ACS Nano 3:2139–2146CrossRef
255.
Zurück zum Zitat Lu M, Cohen MH, Rieves D, Pazdur R (2010) FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol 85:315–319 Lu M, Cohen MH, Rieves D, Pazdur R (2010) FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol 85:315–319
256.
Zurück zum Zitat Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV et al (2012) X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater 24:3870–3877CrossRef Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV et al (2012) X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater 24:3870–3877CrossRef
257.
Zurück zum Zitat Khandhar AP, Ferguson RM, Arami H, Krishnan KM (2013) Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. Biomaterials 34:3837–3845CrossRef Khandhar AP, Ferguson RM, Arami H, Krishnan KM (2013) Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. Biomaterials 34:3837–3845CrossRef
258.
Zurück zum Zitat Douek M, Klaase J, Monypenny I, Kothari A, Zechmeister K, Brown D et al (2014) Sentinel node biopsy using a magnetic tracer versus standard technique: the SentiMAG multicentre trial. Ann Surg Oncol 21:1237–1245CrossRef Douek M, Klaase J, Monypenny I, Kothari A, Zechmeister K, Brown D et al (2014) Sentinel node biopsy using a magnetic tracer versus standard technique: the SentiMAG multicentre trial. Ann Surg Oncol 21:1237–1245CrossRef
259.
Zurück zum Zitat Wong SL, Balch CM, Hurley P, Agarwala SS, Akhurst TJ, Cochran A et al (2012) Sentinel lymph node biopsy for melanoma: American Society of Clinical Oncology and Society of Surgical Oncology joint clinical practice guideline. J Clin Oncol 30:2912–2918CrossRef Wong SL, Balch CM, Hurley P, Agarwala SS, Akhurst TJ, Cochran A et al (2012) Sentinel lymph node biopsy for melanoma: American Society of Clinical Oncology and Society of Surgical Oncology joint clinical practice guideline. J Clin Oncol 30:2912–2918CrossRef
260.
Zurück zum Zitat Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185CrossRef Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185CrossRef
261.
Zurück zum Zitat Wiley DT, Webster P, Gale A, Davis ME (2013) Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci USA 110:8662–8667CrossRef Wiley DT, Webster P, Gale A, Davis ME (2013) Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci USA 110:8662–8667CrossRef
262.
Zurück zum Zitat Maack T, Johnson V, Kau ST, Figueiredo J, Sigulem D (1979) Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 16:251–270CrossRef Maack T, Johnson V, Kau ST, Figueiredo J, Sigulem D (1979) Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 16:251–270CrossRef
263.
Zurück zum Zitat Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170CrossRef Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170CrossRef
264.
Zurück zum Zitat Sarin H (2010) Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res 2:14 (19 pp) CrossRef Sarin H (2010) Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res 2:14 (19 pp) CrossRef
265.
Zurück zum Zitat Hume DA (2006) The mononuclear phagocyte system. Curr Opin Immunol 18:49–53CrossRef Hume DA (2006) The mononuclear phagocyte system. Curr Opin Immunol 18:49–53CrossRef
266.
Zurück zum Zitat Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1 (17 pp) CrossRef Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1 (17 pp) CrossRef
267.
Zurück zum Zitat Wisse E, Jacobs F, Topal B, Frederik P, De Geest B (2008) The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther 15:1193–1199CrossRef Wisse E, Jacobs F, Topal B, Frederik P, De Geest B (2008) The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther 15:1193–1199CrossRef
268.
Zurück zum Zitat Cesta MF (2006) Normal structure, function, and histology of the spleen. Toxicol Pathol 34:455–465CrossRef Cesta MF (2006) Normal structure, function, and histology of the spleen. Toxicol Pathol 34:455–465CrossRef
269.
Zurück zum Zitat Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417CrossRef Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417CrossRef
270.
Zurück zum Zitat Ahmed M, Purushotham AD, Douek M (2014) Novel techniques for sentinel lymph node biopsy in breast cancer: a systematic review. Lancet Oncol 15:e351–e362CrossRef Ahmed M, Purushotham AD, Douek M (2014) Novel techniques for sentinel lymph node biopsy in breast cancer: a systematic review. Lancet Oncol 15:e351–e362CrossRef
271.
Zurück zum Zitat Klimberg VS, Rubio IT, Henry R, Cowan C, Colvert M, Korourian S (1999) Subareolar versus peritumoral injection for location of the sentinel lymph node. Ann Surg 229:860–865CrossRef Klimberg VS, Rubio IT, Henry R, Cowan C, Colvert M, Korourian S (1999) Subareolar versus peritumoral injection for location of the sentinel lymph node. Ann Surg 229:860–865CrossRef
272.
Zurück zum Zitat Thill M, Kurylcio A, Welter R, van Haasteren V, Grosse B, Berclaz G et al (2014) The Central-European SentiMag study: sentinel lymph node biopsy with superparamagnetic iron oxide (SPIO) vs. radioisotope. Breast 23:175–179CrossRef Thill M, Kurylcio A, Welter R, van Haasteren V, Grosse B, Berclaz G et al (2014) The Central-European SentiMag study: sentinel lymph node biopsy with superparamagnetic iron oxide (SPIO) vs. radioisotope. Breast 23:175–179CrossRef
273.
Zurück zum Zitat Bourrinet P, Bengele HH, Bonnemain B, Dencausse A, Idee JM, Jacobs PM et al (2006) Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 41:313–324CrossRef Bourrinet P, Bengele HH, Bonnemain B, Dencausse A, Idee JM, Jacobs PM et al (2006) Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 41:313–324CrossRef
274.
Zurück zum Zitat Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ (2006) In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27:27–36CrossRef Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ (2006) In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27:27–36CrossRef
275.
Zurück zum Zitat Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup-Link HE (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858CrossRef Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup-Link HE (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858CrossRef
276.
Zurück zum Zitat Matuszewski L, Persigehl T, Wall A, Schwindt W, Tombach B, Fobker M et al (2005) Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235:155–161CrossRef Matuszewski L, Persigehl T, Wall A, Schwindt W, Tombach B, Fobker M et al (2005) Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235:155–161CrossRef
277.
Zurück zum Zitat Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515CrossRef Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515CrossRef
278.
Zurück zum Zitat Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102CrossRef Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102CrossRef
279.
Zurück zum Zitat Storm G, Belliot SO, Daemen T, Lasic DD (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17:31–48CrossRef Storm G, Belliot SO, Daemen T, Lasic DD (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17:31–48CrossRef
280.
Zurück zum Zitat Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437CrossRef Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437CrossRef
281.
Zurück zum Zitat Almeida JP, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine 6:815–835CrossRef Almeida JP, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine 6:815–835CrossRef
282.
Zurück zum Zitat Schlenoff JB (2014) Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30:9625–9636CrossRef Schlenoff JB (2014) Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30:9625–9636CrossRef
283.
Zurück zum Zitat Shuai XT, Merdan T, Unger F, Wittmar M, Kissel T (2003) Novel biodegradable ternary copolymers hy-PEI-g-PCL-b-PEG: synthesis, characterization, and potential as efficient nonviral gene delivery vectors. Macromolecules 36:5751–5759CrossRef Shuai XT, Merdan T, Unger F, Wittmar M, Kissel T (2003) Novel biodegradable ternary copolymers hy-PEI-g-PCL-b-PEG: synthesis, characterization, and potential as efficient nonviral gene delivery vectors. Macromolecules 36:5751–5759CrossRef
284.
Zurück zum Zitat Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6:715–728CrossRef Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6:715–728CrossRef
285.
Zurück zum Zitat Gong P, Grainger DW (2007) Nonfouling surfaces: a review of principles and applications for microarray capture design assays. Method Mol Biol 381:59–92 Gong P, Grainger DW (2007) Nonfouling surfaces: a review of principles and applications for microarray capture design assays. Method Mol Biol 381:59–92
286.
Zurück zum Zitat Beard JL, Dawson H, Pinero DJ (1996) Iron metabolism: a comprehensive review. Nutr Rev 54:295–317CrossRef Beard JL, Dawson H, Pinero DJ (1996) Iron metabolism: a comprehensive review. Nutr Rev 54:295–317CrossRef
287.
288.
Zurück zum Zitat Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341:1986–1995CrossRef Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341:1986–1995CrossRef
289.
Zurück zum Zitat Galvez N, Fernandez B, Sanchez P, Cuesta R, Ceolin M, Clemente-Leon M et al (2008) Comparative structural and chemical studies of ferritin cores with gradual removal of their iron contents. J Am Chem Soc 130:8062–8068CrossRef Galvez N, Fernandez B, Sanchez P, Cuesta R, Ceolin M, Clemente-Leon M et al (2008) Comparative structural and chemical studies of ferritin cores with gradual removal of their iron contents. J Am Chem Soc 130:8062–8068CrossRef
Metadaten
Titel
Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine
verfasst von
Yuping Bao
Tianlong Wen
Anna Cristina S. Samia
Amit Khandhar
Kannan M. Krishnan
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 1/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9324-2

Weitere Artikel der Ausgabe 1/2016

Journal of Materials Science 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.