Skip to main content

2019 | OriginalPaper | Buchkapitel

Extraction of Cellulose Nanofibers and Their Eco-friendly Polymer Composites

verfasst von : M. Hazwan Hussin, Djalal Trache, Caryn Tan Hui Chuin, M. R. Nurul Fazita, M. K. Mohamad Haafiz, Md. Sohrab Hossain

Erschienen in: Sustainable Polymer Composites and Nanocomposites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polymer-based materials are an important and promising area of research exhibiting strong developments (Sadeghi et al. in J Mol Liq 263:282–287, 2018, [1; Rezakazemi et al. in Progr Energy Combust Sci 66:1–41, 2018 [2]). They play a prominent role in the modern civilization and find application in different industries related to electrical and electronic equipment, chemicals, automotive, spacecraft, energy storage in batteries and supercapacitors and medical to cite a few.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sadeghi A et al (2018) Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory-Huggins model. J Mol Liq 263:282–287CrossRef Sadeghi A et al (2018) Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory-Huggins model. J Mol Liq 263:282–287CrossRef
2.
Zurück zum Zitat Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41CrossRef Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41CrossRef
3.
Zurück zum Zitat Kumode MMN et al (2017) Microfibrillated nanocellulose from balsa tree as potential reinforcement in the preparation of ‘green’composites with castor seed cake. J Clean Prod 149:1157–1163CrossRef Kumode MMN et al (2017) Microfibrillated nanocellulose from balsa tree as potential reinforcement in the preparation of ‘green’composites with castor seed cake. J Clean Prod 149:1157–1163CrossRef
4.
Zurück zum Zitat Kargarzadeh H et al (2017) Handbook of nanocellulose and cellulose nanocomposites. Wiley Online Library Kargarzadeh H et al (2017) Handbook of nanocellulose and cellulose nanocomposites. Wiley Online Library
5.
Zurück zum Zitat Jawaid M, Boufi S, Abdul KH et al (2017) Cellulose-reinforced nanofiber composites. Elsevier Jawaid M, Boufi S, Abdul KH et al (2017) Cellulose-reinforced nanofiber composites. Elsevier
6.
Zurück zum Zitat Trache D (2017) Microcrystalline cellulose and related polymer somposites: synthesis, characterization and properties. In: Handbook of composites from renewable materials, Thakur VK, Kumari Thakur M, Kessler MR et al (eds). Scrivener Publishing LLC, pp 61–92 Trache D (2017) Microcrystalline cellulose and related polymer somposites: synthesis, characterization and properties. In: Handbook of composites from renewable materials, Thakur VK, Kumari Thakur M, Kessler MR et al (eds). Scrivener Publishing LLC, pp 61–92
7.
Zurück zum Zitat Kargarzadeh H et al (2017) Recent developments on nanocellulose reinforced polymer nanocomposite: A review polymer Kargarzadeh H et al (2017) Recent developments on nanocellulose reinforced polymer nanocomposite: A review polymer
8.
Zurück zum Zitat Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B: Polym Phys 52(12):791–806CrossRef Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B: Polym Phys 52(12):791–806CrossRef
9.
Zurück zum Zitat Trache D et al (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application—A review. Int J Biol Macromol 93(Pt A):789–804CrossRef Trache D et al (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application—A review. Int J Biol Macromol 93(Pt A):789–804CrossRef
10.
Zurück zum Zitat Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—An overview. Prog Polym Sci 34(9):982–1021CrossRef Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—An overview. Prog Polym Sci 34(9):982–1021CrossRef
11.
Zurück zum Zitat Moon RJ et al (2011) Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRef Moon RJ et al (2011) Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRef
12.
Zurück zum Zitat Haafiz MM et al (2015) Bionanocomposite based on cellulose nanowhisker from oil palm biomass-filled poly (lactic acid). Polym Test 48:133–139CrossRef Haafiz MM et al (2015) Bionanocomposite based on cellulose nanowhisker from oil palm biomass-filled poly (lactic acid). Polym Test 48:133–139CrossRef
13.
Zurück zum Zitat Trache D et al (2017) Recent progress in cellulose nanocrystals: Sources and production. Nanoscale 9(5):1763–1786CrossRef Trache D et al (2017) Recent progress in cellulose nanocrystals: Sources and production. Nanoscale 9(5):1763–1786CrossRef
14.
Zurück zum Zitat Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRef Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRef
15.
Zurück zum Zitat Oun AA, Rhim J-W (2016) Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohyd Polym 150:187–200CrossRef Oun AA, Rhim J-W (2016) Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohyd Polym 150:187–200CrossRef
16.
Zurück zum Zitat Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28 Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28
17.
Zurück zum Zitat Thakur VK (2015) Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley Thakur VK (2015) Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley
18.
Zurück zum Zitat Qin X et al (2015) Tuning glass transition in polymer nanocomposites with functionalized cellulose nanocrystals through nanoconfinement. Nano Lett 15(10):6738–6744CrossRef Qin X et al (2015) Tuning glass transition in polymer nanocomposites with functionalized cellulose nanocrystals through nanoconfinement. Nano Lett 15(10):6738–6744CrossRef
19.
Zurück zum Zitat Boujemaoui A et al (2015) Preparation and characterization of functionalized cellulose nanocrystals. Carbohyd Polym 115:457–464CrossRef Boujemaoui A et al (2015) Preparation and characterization of functionalized cellulose nanocrystals. Carbohyd Polym 115:457–464CrossRef
20.
Zurück zum Zitat Kim J-H et al (2015) Review of nanocellulose for sustainable future materials. Int J Prec Eng Manufact-Green Technol 2(2):197–213CrossRef Kim J-H et al (2015) Review of nanocellulose for sustainable future materials. Int J Prec Eng Manufact-Green Technol 2(2):197–213CrossRef
21.
Zurück zum Zitat Ng H-M et al (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng 75:176–200CrossRef Ng H-M et al (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng 75:176–200CrossRef
22.
Zurück zum Zitat Xu X et al (2014) Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly (ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules 47(10):3409–3416CrossRef Xu X et al (2014) Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly (ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules 47(10):3409–3416CrossRef
23.
Zurück zum Zitat Singla R et al (2016) Nanocellulose and nanocomposites. In: Nanoscale materials in targeted drug delivery, theragnosis and tissue regeneration, Springer, pp 103–125 Singla R et al (2016) Nanocellulose and nanocomposites. In: Nanoscale materials in targeted drug delivery, theragnosis and tissue regeneration, Springer, pp 103–125
24.
Zurück zum Zitat Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68(9):2383–2394CrossRef Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68(9):2383–2394CrossRef
25.
Zurück zum Zitat Vazquez A et al (2015) Extraction and production of cellulose nanofibers. In: Handbook of polymer nanocomposites. Processing, performance and application. Springer, pp 81–118 Vazquez A et al (2015) Extraction and production of cellulose nanofibers. In: Handbook of polymer nanocomposites. Processing, performance and application. Springer, pp 81–118
26.
Zurück zum Zitat Thakur VK (2015) Lignocellulosic polymer composites: processing, characterization, and properties. Wiley Thakur VK (2015) Lignocellulosic polymer composites: processing, characterization, and properties. Wiley
27.
Zurück zum Zitat Pandey J et al (2015) Handbook of polymer nanocomposites. Processing, performance and application. Springer Pandey J et al (2015) Handbook of polymer nanocomposites. Processing, performance and application. Springer
28.
Zurück zum Zitat Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polymer J 59:302–325CrossRef Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polymer J 59:302–325CrossRef
29.
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef
30.
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polym 2(4):728–765CrossRef Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polym 2(4):728–765CrossRef
31.
Zurück zum Zitat Borges J et al (2015) Cellulose-based liquid crystalline composite systems. In: Thakur VK (ed) Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley-Scrivener, pp 215–235 Borges J et al (2015) Cellulose-based liquid crystalline composite systems. In: Thakur VK (ed) Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley-Scrivener, pp 215–235
32.
Zurück zum Zitat Wertz J-L, Mercier JP, Bédué O (2010) Cellulose science and technology. CRC Press, SwitzerlandCrossRef Wertz J-L, Mercier JP, Bédué O (2010) Cellulose science and technology. CRC Press, SwitzerlandCrossRef
33.
Zurück zum Zitat Postek MT et al (2013) Production and applications of cellulose. Tappi Press, Peachtree Corners Postek MT et al (2013) Production and applications of cellulose. Tappi Press, Peachtree Corners
34.
Zurück zum Zitat Klemm D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef Klemm D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef
35.
Zurück zum Zitat Klemm D et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRef Klemm D et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRef
36.
Zurück zum Zitat Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6(14):7764–7779CrossRef Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6(14):7764–7779CrossRef
37.
Zurück zum Zitat Wei H et al (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci: Nano 1(4):302–316 Wei H et al (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci: Nano 1(4):302–316
38.
Zurück zum Zitat Heinze T (2016) Cellulose: structure and properties. In: Cellulose chemistry and properties: Fibers, nanocelluloses and advanced materials. Springer, pp 1–52 Heinze T (2016) Cellulose: structure and properties. In: Cellulose chemistry and properties: Fibers, nanocelluloses and advanced materials. Springer, pp 1–52
39.
Zurück zum Zitat Trache D et al (2014) Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohyd Polym 104:223–230CrossRef Trache D et al (2014) Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohyd Polym 104:223–230CrossRef
40.
Zurück zum Zitat Gupta V et al (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Biores Technol 216:1066–1076CrossRef Gupta V et al (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Biores Technol 216:1066–1076CrossRef
41.
Zurück zum Zitat Oksman K et al (2014) Handbook of green materials: Processing technologies, properties and applications (in 4 volumes), vol 5. World Scientific Oksman K et al (2014) Handbook of green materials: Processing technologies, properties and applications (in 4 volumes), vol 5. World Scientific
42.
Zurück zum Zitat ISO/TS80004–1 (2010) International organization for standardization. ISO technical specification ISO/TS80004-1, Nanotechnologies—Vocabulary—Part 1: Core terms ISO/TS80004–1 (2010) International organization for standardization. ISO technical specification ISO/TS80004-1, Nanotechnologies—Vocabulary—Part 1: Core terms
43.
Zurück zum Zitat ISO/TS27687 (2008) International organization for standardization. ISO technical specification ISO/TS 27687, Nanotechnologies—Terminology and definitions for nano-objects-Nanoparticle, nanofiber and nanoplate ISO/TS27687 (2008) International organization for standardization. ISO technical specification ISO/TS 27687, Nanotechnologies—Terminology and definitions for nano-objects-Nanoparticle, nanofiber and nanoplate
44.
Zurück zum Zitat Brinchi L et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(1):154–169CrossRef Brinchi L et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(1):154–169CrossRef
45.
Zurück zum Zitat Charreau H, Foresti ML, Vázquez A et al (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent patents on nanotechnology, 7(1), pp 56–80 Charreau H, Foresti ML, Vázquez A et al (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent patents on nanotechnology, 7(1), pp 56–80
47.
Zurück zum Zitat Gama M, Gatenholm P, Klemm D et al (2012) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press Gama M, Gatenholm P, Klemm D et al (2012) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press
48.
Zurück zum Zitat Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohyd Polym 146:148–165CrossRef Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohyd Polym 146:148–165CrossRef
49.
Zurück zum Zitat Dufresne A (2013) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter Dufresne A (2013) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter
50.
Zurück zum Zitat Agbor VB et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685CrossRef Agbor VB et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685CrossRef
51.
Zurück zum Zitat Trache D et al (2016) Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim 124(3):1485–1496CrossRef Trache D et al (2016) Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim 124(3):1485–1496CrossRef
52.
Zurück zum Zitat Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sustain Energy Rev 41:402–412CrossRef Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sustain Energy Rev 41:402–412CrossRef
53.
Zurück zum Zitat Jonoobi M et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellul 22(2):935–969CrossRef Jonoobi M et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellul 22(2):935–969CrossRef
54.
Zurück zum Zitat Dufresne A, Belgacem MN (2013) Cellulose-reinforced composites: from micro-to nanoscale. Polímeros 23(3):277–286 Dufresne A, Belgacem MN (2013) Cellulose-reinforced composites: from micro-to nanoscale. Polímeros 23(3):277–286
55.
Zurück zum Zitat Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227CrossRef Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227CrossRef
56.
Zurück zum Zitat Abdul Khalil H et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd Polym 99:649–665CrossRef Abdul Khalil H et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd Polym 99:649–665CrossRef
57.
Zurück zum Zitat Lavoine N et al (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764CrossRef Lavoine N et al (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764CrossRef
58.
Zurück zum Zitat Gama M, Dourado F, Bielecki S et al (2016) Bacterial nanocellulose: from biotechnology to bio-economy. Elsevier Gama M, Dourado F, Bielecki S et al (2016) Bacterial nanocellulose: from biotechnology to bio-economy. Elsevier
59.
Zurück zum Zitat Vasconcelos NF et al (2017) Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohyd Polym 155:425–431CrossRef Vasconcelos NF et al (2017) Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohyd Polym 155:425–431CrossRef
60.
Zurück zum Zitat Campano C et al (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellul 23(1):57–91CrossRef Campano C et al (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellul 23(1):57–91CrossRef
61.
Zurück zum Zitat Anwar B, Bundjali B, Arcana IM (2015) Isolation of cellulose nanocrystals from bacterial cellulose produced from pineapple peel waste juice as culture medium. Procedia Chem 16:279–284CrossRef Anwar B, Bundjali B, Arcana IM (2015) Isolation of cellulose nanocrystals from bacterial cellulose produced from pineapple peel waste juice as culture medium. Procedia Chem 16:279–284CrossRef
62.
Zurück zum Zitat George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45CrossRef George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45CrossRef
63.
Zurück zum Zitat Kontturi E et al (2016) Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals. Angew Chem Int Ed 55(46):14455–14458CrossRef Kontturi E et al (2016) Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals. Angew Chem Int Ed 55(46):14455–14458CrossRef
64.
Zurück zum Zitat Du H et al (2016) Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 1–19 Du H et al (2016) Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 1–19
65.
Zurück zum Zitat Chen L et al (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem Chen L et al (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem
66.
Zurück zum Zitat Liu Y et al (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohyd Polym 110:415–422CrossRef Liu Y et al (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohyd Polym 110:415–422CrossRef
67.
Zurück zum Zitat Tang L-R et al (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Biores Technol 102(23):10973–10977CrossRef Tang L-R et al (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Biores Technol 102(23):10973–10977CrossRef
68.
Zurück zum Zitat Anderson SR et al (2014) Enzymatic preparation of nanocrystalline and microcrystalline cellulose. TAPPI J, vol 13, pp 35–41 Anderson SR et al (2014) Enzymatic preparation of nanocrystalline and microcrystalline cellulose. TAPPI J, vol 13, pp 35–41
69.
Zurück zum Zitat Xu Y et al (2013) Feasibility of nanocrystalline cellulose production by endoglucanase treatment of natural bast fibers. Ind Crops Prod 51:381–384CrossRef Xu Y et al (2013) Feasibility of nanocrystalline cellulose production by endoglucanase treatment of natural bast fibers. Ind Crops Prod 51:381–384CrossRef
70.
Zurück zum Zitat Chen X et al (2012) Controlled enzymolysis preparation of nanocrystalline cellulose from pretreated cotton fibers. BioRes 7(3):4237–4248 Chen X et al (2012) Controlled enzymolysis preparation of nanocrystalline cellulose from pretreated cotton fibers. BioRes 7(3):4237–4248
71.
Zurück zum Zitat Amin KNM et al (2015) Production of cellulose nanocrystals via a scalable mechanical method. RSC Adv 5(70):57133–57140CrossRef Amin KNM et al (2015) Production of cellulose nanocrystals via a scalable mechanical method. RSC Adv 5(70):57133–57140CrossRef
72.
Zurück zum Zitat Lazko J et al (2016) Acid-free extraction of cellulose type I nanocrystals using Brønsted acid-type ionic liquids. Nanocomposites 2(2):65–75CrossRef Lazko J et al (2016) Acid-free extraction of cellulose type I nanocrystals using Brønsted acid-type ionic liquids. Nanocomposites 2(2):65–75CrossRef
73.
Zurück zum Zitat Tan XY, Hamid SBA, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenerg 81:584–591CrossRef Tan XY, Hamid SBA, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenerg 81:584–591CrossRef
74.
Zurück zum Zitat Mao J et al (2015) Cellulose nanocrystals production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim] HSO4)–mediated hydrolysis. Carbohyd Polym 117:443–451CrossRef Mao J et al (2015) Cellulose nanocrystals production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim] HSO4)–mediated hydrolysis. Carbohyd Polym 117:443–451CrossRef
75.
Zurück zum Zitat Lazko J et al (2014) Well defined thermostable cellulose nanocrystals via two-step ionic liquid swelling-hydrolysis extraction. Cellulose 21(6):4195–4207CrossRef Lazko J et al (2014) Well defined thermostable cellulose nanocrystals via two-step ionic liquid swelling-hydrolysis extraction. Cellulose 21(6):4195–4207CrossRef
76.
Zurück zum Zitat Novo LP et al (2016) A study of the production of cellulose nanocrystals through subcritical water hydrolysis. Indus Crops Prod Novo LP et al (2016) A study of the production of cellulose nanocrystals through subcritical water hydrolysis. Indus Crops Prod
77.
Zurück zum Zitat Novo LP et al (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3(11):2839–2846CrossRef Novo LP et al (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3(11):2839–2846CrossRef
79.
Zurück zum Zitat Sun B et al (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22(2):1135–1146CrossRef Sun B et al (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22(2):1135–1146CrossRef
80.
Zurück zum Zitat Visanko M et al (2014) Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: Physicochemical characteristics and use as an oil—water stabilizer. Biomacromol 15(7):2769–2775CrossRef Visanko M et al (2014) Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: Physicochemical characteristics and use as an oil—water stabilizer. Biomacromol 15(7):2769–2775CrossRef
81.
Zurück zum Zitat Cao X et al (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohyd Polym 90(2):1075–1080CrossRef Cao X et al (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohyd Polym 90(2):1075–1080CrossRef
82.
Zurück zum Zitat Chowdhury ZZ, Hamid SBA (2016) Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a microwave-assisted pretreatment process. BioRes 11(2):3397–3415 Chowdhury ZZ, Hamid SBA (2016) Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a microwave-assisted pretreatment process. BioRes 11(2):3397–3415
83.
Zurück zum Zitat Tang Y et al (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21(1):335–346CrossRef Tang Y et al (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21(1):335–346CrossRef
84.
Zurück zum Zitat Lu Z et al (2013) Preparation, characterization and optimization of nanocellulose whiskers by simultaneously ultrasonic wave and microwave assisted. Biores Technol 146:82–88CrossRef Lu Z et al (2013) Preparation, characterization and optimization of nanocellulose whiskers by simultaneously ultrasonic wave and microwave assisted. Biores Technol 146:82–88CrossRef
85.
Zurück zum Zitat Lee H et al (2018) Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment. Carbohyd Polym 181:506–513CrossRef Lee H et al (2018) Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment. Carbohyd Polym 181:506–513CrossRef
86.
Zurück zum Zitat Turbak AF, Snyder FW, Sandberg KR et al (1983) Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp (U S). ITT Rayonier Inc., Shelton, WA Turbak AF, Snyder FW, Sandberg KR et al (1983) Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp (U S). ITT Rayonier Inc., Shelton, WA
87.
Zurück zum Zitat Herrick FW et al (1983) Microfibrillated cellulose: Morphology and accessibility. J Appl Polym Sci: Appl Polym Symp (U S). ITT Rayonier Inc., Shelton, WA Herrick FW et al (1983) Microfibrillated cellulose: Morphology and accessibility. J Appl Polym Sci: Appl Polym Symp (U S). ITT Rayonier Inc., Shelton, WA
88.
Zurück zum Zitat Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellul 23(1):93–123CrossRef Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellul 23(1):93–123CrossRef
89.
Zurück zum Zitat Lee H, Sundaram J, Mani S et al (2017) Production of cellulose nanofibrils and their application to food: a review, in nanotechnology. Springer, pp 1–33 Lee H, Sundaram J, Mani S et al (2017) Production of cellulose nanofibrils and their application to food: a review, in nanotechnology. Springer, pp 1–33
90.
Zurück zum Zitat Rol F et al (2017) Pilot-Scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain Chem Eng 5(8):6524–6531CrossRef Rol F et al (2017) Pilot-Scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain Chem Eng 5(8):6524–6531CrossRef
91.
Zurück zum Zitat Yan H et al (2017) Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocolloids 72:127–135CrossRef Yan H et al (2017) Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocolloids 72:127–135CrossRef
92.
Zurück zum Zitat Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6(9):6127–6138CrossRef Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6(9):6127–6138CrossRef
93.
Zurück zum Zitat Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotechniques Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotechniques
94.
Zurück zum Zitat Ioelovich M (2013) Nanoparticles of amorphous cellulose and their properties. Am J Nanosci Nanotechnol 1(1):41–45CrossRef Ioelovich M (2013) Nanoparticles of amorphous cellulose and their properties. Am J Nanosci Nanotechnol 1(1):41–45CrossRef
95.
Zurück zum Zitat Ioelovich M (2014) Peculiarities of cellulose nanoparticles. Tappi J 13(5):45–51 Ioelovich M (2014) Peculiarities of cellulose nanoparticles. Tappi J 13(5):45–51
96.
Zurück zum Zitat Quan S-L, Kang S-G, Chin I-J (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17(2):223–230CrossRef Quan S-L, Kang S-G, Chin I-J (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17(2):223–230CrossRef
97.
Zurück zum Zitat Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomater Nanobiotechnol 4(02):165CrossRef Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomater Nanobiotechnol 4(02):165CrossRef
98.
Zurück zum Zitat Nascimento SA, Rezende CA (2018) Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass. Carbohyd Polym 180:38–45CrossRef Nascimento SA, Rezende CA (2018) Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass. Carbohyd Polym 180:38–45CrossRef
99.
Zurück zum Zitat Frone AN et al (2017) Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization. Mater Lett 194:160–163CrossRef Frone AN et al (2017) Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization. Mater Lett 194:160–163CrossRef
100.
Zurück zum Zitat Wang Z et al (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohyd Polym 157:945–952CrossRef Wang Z et al (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohyd Polym 157:945–952CrossRef
101.
Zurück zum Zitat Zhang K et al (2016) Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohyd Polym 138:237–243CrossRef Zhang K et al (2016) Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohyd Polym 138:237–243CrossRef
102.
Zurück zum Zitat Yu H-Y et al (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem. Eng 4(5):2632–2643CrossRef Yu H-Y et al (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem. Eng 4(5):2632–2643CrossRef
103.
Zurück zum Zitat Rohaizu R, Wanrosli W (2017) Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose. Ultrason Sonochem 34:631–639CrossRef Rohaizu R, Wanrosli W (2017) Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose. Ultrason Sonochem 34:631–639CrossRef
104.
Zurück zum Zitat Ho TTT et al (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellul 22(1):421–433CrossRef Ho TTT et al (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellul 22(1):421–433CrossRef
105.
Zurück zum Zitat Nechyporchuk O, Pignon F, Belgacem MN (2015) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50(2):531–541CrossRef Nechyporchuk O, Pignon F, Belgacem MN (2015) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50(2):531–541CrossRef
106.
Zurück zum Zitat Sirviö JA, Visanko M, Liimatainen H (2015) Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chem 17(6):3401–3406CrossRef Sirviö JA, Visanko M, Liimatainen H (2015) Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chem 17(6):3401–3406CrossRef
107.
Zurück zum Zitat Oun AA, Rhim J-W (2016) Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: effect of isolation method. Mater Lett 168:146–150CrossRef Oun AA, Rhim J-W (2016) Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: effect of isolation method. Mater Lett 168:146–150CrossRef
108.
Zurück zum Zitat Lee H-R et al (2018) A new method to produce cellulose nanofibrils from microalgae and the measurement of their mechanical strength. Carbohyd Polym 180:276–285CrossRef Lee H-R et al (2018) A new method to produce cellulose nanofibrils from microalgae and the measurement of their mechanical strength. Carbohyd Polym 180:276–285CrossRef
109.
Zurück zum Zitat Valdebenito F et al (2017) On the nanofibrillation of corn husks and oat hulls fibres. Ind Crops Prod 95:528–534CrossRef Valdebenito F et al (2017) On the nanofibrillation of corn husks and oat hulls fibres. Ind Crops Prod 95:528–534CrossRef
110.
Zurück zum Zitat Lee H, Mani S (2017) Mechanical pretreatment of cellulose pulp to produce cellulose nanofibrils using a dry grinding method. Ind Crops Prod 104:179–187CrossRef Lee H, Mani S (2017) Mechanical pretreatment of cellulose pulp to produce cellulose nanofibrils using a dry grinding method. Ind Crops Prod 104:179–187CrossRef
111.
Zurück zum Zitat Park C-W et al (2017) Preparation and characterization of cellulose nanofibrils with varying chemical compositions. BioRes 12(3):5031–5044 Park C-W et al (2017) Preparation and characterization of cellulose nanofibrils with varying chemical compositions. BioRes 12(3):5031–5044
112.
Zurück zum Zitat Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315CrossRef Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315CrossRef
113.
Zurück zum Zitat Meyabadi TF et al (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technology, vol 261, pp 232–240 Meyabadi TF et al (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technology, vol 261, pp 232–240
114.
Zurück zum Zitat Chen Y et al (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohyd Polym 76(4):607–615CrossRef Chen Y et al (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohyd Polym 76(4):607–615CrossRef
115.
Zurück zum Zitat Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohyd Polym 134:609–616CrossRef Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohyd Polym 134:609–616CrossRef
116.
Zurück zum Zitat Miao J et al (2016) One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose 23(2):1209–1219CrossRef Miao J et al (2016) One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose 23(2):1209–1219CrossRef
117.
Zurück zum Zitat Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly (vinyl alcohol) composites. Ultrason Sonochem 19(3):479–485CrossRef Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly (vinyl alcohol) composites. Ultrason Sonochem 19(3):479–485CrossRef
118.
Zurück zum Zitat Elanthikkal S et al (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohyd Polym 80(3):852–859CrossRef Elanthikkal S et al (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohyd Polym 80(3):852–859CrossRef
119.
Zurück zum Zitat Kumar A et al (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phy Chem 2(1):1–8 Kumar A et al (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phy Chem 2(1):1–8
120.
Zurück zum Zitat Haafiz MM et al (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohyd Polym 103:119–125CrossRef Haafiz MM et al (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohyd Polym 103:119–125CrossRef
121.
Zurück zum Zitat Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohyd Polym 137:608–616CrossRef Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohyd Polym 137:608–616CrossRef
122.
Zurück zum Zitat Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohyd Polym 87(1):564–573CrossRef Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohyd Polym 87(1):564–573CrossRef
123.
Zurück zum Zitat Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd Polym 82(2):329–336CrossRef Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd Polym 82(2):329–336CrossRef
124.
Zurück zum Zitat Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd Polym 86(3):1291–1299CrossRef Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd Polym 86(3):1291–1299CrossRef
125.
Zurück zum Zitat Satyamurthy P et al (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohyd Polym 83(1):122–129CrossRef Satyamurthy P et al (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohyd Polym 83(1):122–129CrossRef
126.
Zurück zum Zitat Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37(1):93–99CrossRef Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37(1):93–99CrossRef
127.
Zurück zum Zitat Sheltami RM et al (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohyd Polym 88(2):772–779CrossRef Sheltami RM et al (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohyd Polym 88(2):772–779CrossRef
128.
Zurück zum Zitat Xiong R et al (2012) Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose 19(4):1189–1198CrossRef Xiong R et al (2012) Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose 19(4):1189–1198CrossRef
129.
Zurück zum Zitat Chandrahasa R, Rajamane NP, Jeyalakshmi et al (2014) Development of cellulose nanofibres from coconut husks. Int J Emerg Technol Adv Eng 4(4):2250–2259 Chandrahasa R, Rajamane NP, Jeyalakshmi et al (2014) Development of cellulose nanofibres from coconut husks. Int J Emerg Technol Adv Eng 4(4):2250–2259
130.
Zurück zum Zitat Nascimento DM et al (2014) A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohyd Polym 110:456–463CrossRef Nascimento DM et al (2014) A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohyd Polym 110:456–463CrossRef
131.
Zurück zum Zitat Lamaming J et al (2015) Cellulose nanocrystals isolated from oil palm trunk. Carbohyd Polym 127:202–208CrossRef Lamaming J et al (2015) Cellulose nanocrystals isolated from oil palm trunk. Carbohyd Polym 127:202–208CrossRef
132.
Zurück zum Zitat Indarti E, Marwan, Wanrosli WD et al (2015) Thermal stability of oil palm empty fruit bunch (OPEFB) nanocrystalline cellulose: effects of post-treatment of oven drying and solvent exchange techniques. J Phys: Conf Ser 622(1):12–25 Indarti E, Marwan, Wanrosli WD et al (2015) Thermal stability of oil palm empty fruit bunch (OPEFB) nanocrystalline cellulose: effects of post-treatment of oven drying and solvent exchange techniques. J Phys: Conf Ser 622(1):12–25
133.
Zurück zum Zitat Chandra J, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohyd Polym 142:158–166CrossRef Chandra J, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohyd Polym 142:158–166CrossRef
134.
Zurück zum Zitat Segal LGJMA et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRef Segal LGJMA et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRef
135.
Zurück zum Zitat Revol JF, Dietrich A, Goring DAI (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65(8):1724–1725CrossRef Revol JF, Dietrich A, Goring DAI (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65(8):1724–1725CrossRef
136.
Zurück zum Zitat Cherian BM et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohyd Polym 86(4):1790–1798CrossRef Cherian BM et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohyd Polym 86(4):1790–1798CrossRef
137.
Zurück zum Zitat Cherian BM et al (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohyd Polym 81(3):720–725CrossRef Cherian BM et al (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohyd Polym 81(3):720–725CrossRef
138.
Zurück zum Zitat Rosa SM et al (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohyd Polym 87(2):1131–1138CrossRef Rosa SM et al (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohyd Polym 87(2):1131–1138CrossRef
139.
Zurück zum Zitat Rosa MF et al (2010) Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81(1):83–92CrossRef Rosa MF et al (2010) Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81(1):83–92CrossRef
140.
Zurück zum Zitat Silvério HA et al (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436CrossRef Silvério HA et al (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436CrossRef
141.
Zurück zum Zitat Neto WPF et al (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—soy hulls. Ind Crops Prod 42:480–488CrossRef Neto WPF et al (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—soy hulls. Ind Crops Prod 42:480–488CrossRef
142.
Zurück zum Zitat Neto WPF et al (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6(79):76017–76027CrossRef Neto WPF et al (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6(79):76017–76027CrossRef
143.
Zurück zum Zitat Luykx DM et al (2008) A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agric Food Chem 56(18):8231–8247CrossRef Luykx DM et al (2008) A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agric Food Chem 56(18):8231–8247CrossRef
144.
Zurück zum Zitat Goldstein J et al (2012) Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Springer Science and Business Media, (2) Goldstein J et al (2012) Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Springer Science and Business Media, (2)
145.
Zurück zum Zitat Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104(6):1153–1175CrossRef Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104(6):1153–1175CrossRef
146.
Zurück zum Zitat Wang QQ et al (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19(6):2033–2047CrossRef Wang QQ et al (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19(6):2033–2047CrossRef
147.
Zurück zum Zitat Azubuike CP, Okhamafe AO (2012) Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Inter J Recycl Org Waste Agric 1:1–7CrossRef Azubuike CP, Okhamafe AO (2012) Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Inter J Recycl Org Waste Agric 1:1–7CrossRef
148.
Zurück zum Zitat Adel AM et al (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical Properties. Carbohyd Polym 83:676CrossRef Adel AM et al (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical Properties. Carbohyd Polym 83:676CrossRef
149.
Zurück zum Zitat Lee KY et al (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27CrossRef Lee KY et al (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27CrossRef
150.
Zurück zum Zitat Yang S, Bai S, Wang Q (2018) Sustainable packaging biocomposites from polylactic acid and wheat straw: enhanced physical performance by solid state shear milling process. Compos Sci Technol 158:34–42CrossRef Yang S, Bai S, Wang Q (2018) Sustainable packaging biocomposites from polylactic acid and wheat straw: enhanced physical performance by solid state shear milling process. Compos Sci Technol 158:34–42CrossRef
151.
Zurück zum Zitat Ashori A et al (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohyd Polym 102:369–375CrossRef Ashori A et al (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohyd Polym 102:369–375CrossRef
152.
Zurück zum Zitat Abdul Khalil HPS et al (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sustain Energy Rev 64:823–836CrossRef Abdul Khalil HPS et al (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sustain Energy Rev 64:823–836CrossRef
153.
Zurück zum Zitat Frone AN et al (2013) Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohyd Polym 91(1):377–384CrossRef Frone AN et al (2013) Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohyd Polym 91(1):377–384CrossRef
154.
Zurück zum Zitat Oksman K et al (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A: Appl Sci Manuf 83:2–18CrossRef Oksman K et al (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A: Appl Sci Manuf 83:2–18CrossRef
155.
Zurück zum Zitat Oksman K et al (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenergy 35(1):146–152CrossRef Oksman K et al (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenergy 35(1):146–152CrossRef
156.
Zurück zum Zitat Lu Y et al (2017) Synthesis of new polyether titanate coupling agents with different polyethyleneglycol segment lengths and their compatibilization in calcium sulfate whisker/poly(vinyl chloride) composites. RSC Adv 7(50):31628–31640CrossRef Lu Y et al (2017) Synthesis of new polyether titanate coupling agents with different polyethyleneglycol segment lengths and their compatibilization in calcium sulfate whisker/poly(vinyl chloride) composites. RSC Adv 7(50):31628–31640CrossRef
157.
Zurück zum Zitat Poveda RL, Gupta N (2016) Mechanical properties of CNF/polymer composites carbon nanofiber reinforced polymer composites. Cham: Springer, pp 27–42 Poveda RL, Gupta N (2016) Mechanical properties of CNF/polymer composites carbon nanofiber reinforced polymer composites. Cham: Springer, pp 27–42
158.
Zurück zum Zitat Kobe R et al (2016) Stretchable composite hydrogels incorporating modified cellulose nanofiber with dispersibility and polymerizability: Mechanical property control and nanofiber orientation. Polym 97:480–486CrossRef Kobe R et al (2016) Stretchable composite hydrogels incorporating modified cellulose nanofiber with dispersibility and polymerizability: Mechanical property control and nanofiber orientation. Polym 97:480–486CrossRef
159.
Zurück zum Zitat Ng HM et al (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Eng 75:176–200CrossRef Ng HM et al (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Eng 75:176–200CrossRef
160.
Zurück zum Zitat Kalia S et al (2011) Cellulose-Based Bio- and Nanocomposites: a review. Int J Polym Sci Kalia S et al (2011) Cellulose-Based Bio- and Nanocomposites: a review. Int J Polym Sci
161.
Zurück zum Zitat Kalia S et al (2014) Nanofibrillated cellulose: Surface modification and potential applications. Colloid Polym Sci 292(1):5–31CrossRef Kalia S et al (2014) Nanofibrillated cellulose: Surface modification and potential applications. Colloid Polym Sci 292(1):5–31CrossRef
162.
Zurück zum Zitat Ishii D, Saito T, Isogai A (2011) viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 12(3):548–550CrossRef Ishii D, Saito T, Isogai A (2011) viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 12(3):548–550CrossRef
163.
Zurück zum Zitat Qing Y et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohyd Polym 97(1):226–234CrossRef Qing Y et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohyd Polym 97(1):226–234CrossRef
164.
Zurück zum Zitat Missoum K, Belgacem M, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Mater 6(5):1745CrossRef Missoum K, Belgacem M, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Mater 6(5):1745CrossRef
165.
Zurück zum Zitat Ahmadi M et al (2017) Topochemistry of cellulose nanofibers resulting from molecular and polymer grafting. Cellulose 24(5):2139–2152CrossRef Ahmadi M et al (2017) Topochemistry of cellulose nanofibers resulting from molecular and polymer grafting. Cellulose 24(5):2139–2152CrossRef
166.
Zurück zum Zitat Roy D et al (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064CrossRef Roy D et al (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064CrossRef
167.
Zurück zum Zitat Safdari F et al (2017) Enhanced properties of poly(ethylene oxide)/cellulose nanofiber biocomposites. Cellulose 24(2):755–767CrossRef Safdari F et al (2017) Enhanced properties of poly(ethylene oxide)/cellulose nanofiber biocomposites. Cellulose 24(2):755–767CrossRef
168.
Zurück zum Zitat Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180CrossRef Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180CrossRef
169.
Zurück zum Zitat Morán JI et al (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159CrossRef Morán JI et al (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159CrossRef
170.
Zurück zum Zitat Fahma F et al (2011) Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 18:443–450CrossRef Fahma F et al (2011) Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 18:443–450CrossRef
171.
Zurück zum Zitat Brito BS et al (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19(5):1527–1536CrossRef Brito BS et al (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19(5):1527–1536CrossRef
172.
Zurück zum Zitat Fan JS, Li YH (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohyd Polym 88(4):1184–1188CrossRef Fan JS, Li YH (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohyd Polym 88(4):1184–1188CrossRef
173.
Zurück zum Zitat Fortunati E et al (2013) Extraction of cellulose nanocrystals from Phormium tenax fibres. J Polym Environ 21(2):319–328CrossRef Fortunati E et al (2013) Extraction of cellulose nanocrystals from Phormium tenax fibres. J Polym Environ 21(2):319–328CrossRef
174.
Zurück zum Zitat Morais JPS et al (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohyd Polym 91(1):229–235CrossRef Morais JPS et al (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohyd Polym 91(1):229–235CrossRef
175.
Zurück zum Zitat Santos RMD et al (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714CrossRef Santos RMD et al (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714CrossRef
176.
Zurück zum Zitat Espinosa CS et al (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14(4):1223–1230CrossRef Espinosa CS et al (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14(4):1223–1230CrossRef
177.
Zurück zum Zitat Le Normand M, Moriana R, Ek M (2014) Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohyd Polym 111:979–987CrossRef Le Normand M, Moriana R, Ek M (2014) Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohyd Polym 111:979–987CrossRef
178.
Zurück zum Zitat Mueller S, Weder C, Foster EJ (2014) Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv 4(2):907–915CrossRef Mueller S, Weder C, Foster EJ (2014) Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv 4(2):907–915CrossRef
179.
Zurück zum Zitat Bettaieb F et al (2015) Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohyd Polym 123:99–104CrossRef Bettaieb F et al (2015) Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohyd Polym 123:99–104CrossRef
180.
Zurück zum Zitat Devi RR (2015) Fabrication of cellulose nanocrystals from agricultural compost. Compost Sci Utilization 23(2):104–116CrossRef Devi RR (2015) Fabrication of cellulose nanocrystals from agricultural compost. Compost Sci Utilization 23(2):104–116CrossRef
181.
Zurück zum Zitat Mohamed MA et al (2015) Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Adv 5(38):29842–29849CrossRef Mohamed MA et al (2015) Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Adv 5(38):29842–29849CrossRef
182.
Zurück zum Zitat Dungani R et al (2016) Preparation and fundamental characterization of cellulose nanocrystal from oil palm fronds biomass. J Poly Environ 1:1–9 Dungani R et al (2016) Preparation and fundamental characterization of cellulose nanocrystal from oil palm fronds biomass. J Poly Environ 1:1–9
183.
Zurück zum Zitat Salajková M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22(37):19798–19805CrossRef Salajková M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22(37):19798–19805CrossRef
184.
Zurück zum Zitat Pan M, Zhou X, Chen M (2013) Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. BioRes 8(1):933–943CrossRef Pan M, Zhou X, Chen M (2013) Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. BioRes 8(1):933–943CrossRef
185.
Zurück zum Zitat Savadekar NR et al (2015) Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch. Appl Nanosci 5(3):281–290CrossRef Savadekar NR et al (2015) Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch. Appl Nanosci 5(3):281–290CrossRef
186.
Zurück zum Zitat Beltramino F et al (2015) Increasing yield of nanocrystalline cellulose preparation process by a cellulase pretreatment. Biores technol 192:574–581CrossRef Beltramino F et al (2015) Increasing yield of nanocrystalline cellulose preparation process by a cellulase pretreatment. Biores technol 192:574–581CrossRef
187.
Zurück zum Zitat Beltramino F et al (2016) Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers. Cellulose 23(3):1777–1789CrossRef Beltramino F et al (2016) Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers. Cellulose 23(3):1777–1789CrossRef
188.
Zurück zum Zitat Camargo LA et al (2016) Feasibility of manufacturing cellulose nanocrystals from the solid residues of second-generation ethanol production from sugarcane bagasse. BioEnergy Res 9(3):894–906CrossRef Camargo LA et al (2016) Feasibility of manufacturing cellulose nanocrystals from the solid residues of second-generation ethanol production from sugarcane bagasse. BioEnergy Res 9(3):894–906CrossRef
189.
Zurück zum Zitat Zhao Y et al (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286–296CrossRef Zhao Y et al (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286–296CrossRef
190.
Zurück zum Zitat Csiszar E et al (2016) The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films. Ultrason Sonochem 31:473–480CrossRef Csiszar E et al (2016) The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films. Ultrason Sonochem 31:473–480CrossRef
191.
Zurück zum Zitat Cudjoe E et al (2017) Miscanthus Giganteus: a commercially viable sustainable source of cellulose nanocrystals. Carbohyd Polym 155:230–241CrossRef Cudjoe E et al (2017) Miscanthus Giganteus: a commercially viable sustainable source of cellulose nanocrystals. Carbohyd Polym 155:230–241CrossRef
192.
Zurück zum Zitat Hamid SBA et al (2016) Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose. Carbohyd Polym 138:349–355CrossRef Hamid SBA et al (2016) Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose. Carbohyd Polym 138:349–355CrossRef
193.
Zurück zum Zitat Li Y et al (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18(4):1010–1018CrossRef Li Y et al (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18(4):1010–1018CrossRef
194.
Zurück zum Zitat Lu Q et al (2014) Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis. Cellulose 21(5):3497–3506CrossRef Lu Q et al (2014) Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis. Cellulose 21(5):3497–3506CrossRef
195.
Zurück zum Zitat Lim YH et al (2016) NanoCrystalline cellulose isolated from oil palm empty fruit bunch and its potential in cadmium metal removal. In: MATEC web of conferences, vol 59. EDP Sciences Lim YH et al (2016) NanoCrystalline cellulose isolated from oil palm empty fruit bunch and its potential in cadmium metal removal. In: MATEC web of conferences, vol 59. EDP Sciences
196.
Zurück zum Zitat Sun B et al (2016) Single-step extraction of functionalized cellulose nanocrystal and polyvinyl chloride from industrial wallpaper wastes. Ind Crops Prod 89:66–77CrossRef Sun B et al (2016) Single-step extraction of functionalized cellulose nanocrystal and polyvinyl chloride from industrial wallpaper wastes. Ind Crops Prod 89:66–77CrossRef
197.
Zurück zum Zitat Tang Y et al (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohyd Polym 125:360–366CrossRef Tang Y et al (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohyd Polym 125:360–366CrossRef
198.
Zurück zum Zitat Yu H et al (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1(12):3938–3944CrossRef Yu H et al (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1(12):3938–3944CrossRef
Metadaten
Titel
Extraction of Cellulose Nanofibers and Their Eco-friendly Polymer Composites
verfasst von
M. Hazwan Hussin
Djalal Trache
Caryn Tan Hui Chuin
M. R. Nurul Fazita
M. K. Mohamad Haafiz
Md. Sohrab Hossain
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05399-4_23

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.