Skip to main content

2017 | OriginalPaper | Buchkapitel

16. Materials for Electrochemical Capacitors

verfasst von : Thierry Brousse, Daniel Bélanger, Kazumi Chiba, Minato Egashira, Frédéric Favier, Jeffrey Long, John R. Miller, Masayuki Morita, Katsuhiko Naoi, Patrice Simon, Wataru Sugimoto

Erschienen in: Springer Handbook of Electrochemical Energy

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this chapter is threefold. First of all, we will attempt to briefly highlight the differences between batteries and electrochemical capacitors (ECs), describe the general types of ECs (symmetric and asymmetric configurations), and present the electrochemical tools that are available to characterize these systems. Second, an EC is a complex device with many components (current collector, separator, active materials, external management electronics) and design features that ultimately determine the device characteristics. However, the advances in performance for future ECs that will be required for their broader implementation as an energy-storage technology will largely depend on new developments in electrode materials and electrolytes, which will be the focus of this chapter. Thus, this chapter will attempt to present a critical assessment of the materials that are currently being used and developed for hybrid ECs. Third, some current applications of ECs will be described in details and will clearly demonstrate that hybrid ECs are no longer a scientific curiosity and that they have found their place as energy-storage systems due to their unique characteristics. Finally, this chapter will be concluded by a section that presents the major role ECs will be playing in the field of energy storage and conservation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[2]
Zurück zum Zitat IEA: Transport, Energy and CO 2 – Moving Towards Sustainability (International Energy Agency, Paris 2009) IEA: Transport, Energy and CO 2 – Moving Towards Sustainability (International Energy Agency, Paris 2009)
[3]
Zurück zum Zitat M. Winter, R.J. Brodd: What are batteries, fuel cells, and supercapacitors?, Chem. Rev. 104, 4245 (2004)CrossRef M. Winter, R.J. Brodd: What are batteries, fuel cells, and supercapacitors?, Chem. Rev. 104, 4245 (2004)CrossRef
[4]
Zurück zum Zitat B.E. Conway: Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications (Kluwer Academic, Dordrecht 1999) B.E. Conway: Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications (Kluwer Academic, Dordrecht 1999)
[5]
Zurück zum Zitat B.E. Conway: Transition from ‘‘supercapacitor’’ to ‘‘battery’’ behavior in electrochemical energy storage, J. Electrochem. Soc. 138, 1539–1548 (1991)CrossRef B.E. Conway: Transition from ‘‘supercapacitor’’ to ‘‘battery’’ behavior in electrochemical energy storage, J. Electrochem. Soc. 138, 1539–1548 (1991)CrossRef
[6]
Zurück zum Zitat A. Burke: Ultracapacitors: Why, how, and where is the technology, J. Power Sources 91, 37 (2000)CrossRef A. Burke: Ultracapacitors: Why, how, and where is the technology, J. Power Sources 91, 37 (2000)CrossRef
[7]
Zurück zum Zitat R. Kötz, M. Carlen: Principles and applications of electrochemical capacitors, Electrochim. Acta 45, 2483 (2000)CrossRef R. Kötz, M. Carlen: Principles and applications of electrochemical capacitors, Electrochim. Acta 45, 2483 (2000)CrossRef
[8]
Zurück zum Zitat E. Frackowiak: Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys. 9, 1774 (2007)CrossRef E. Frackowiak: Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys. 9, 1774 (2007)CrossRef
[9]
Zurück zum Zitat J.W. Long (Ed.): Electrochemical Capacitors, Electrochem. Soc. Interf. 17, 31–57 (2008) J.W. Long (Ed.): Electrochemical Capacitors, Electrochem. Soc. Interf. 17, 31–57 (2008)
[10]
Zurück zum Zitat P. Simon, Y. Gogotsi: Materials for electrochemical capacitors, Nature Mater 7, 845 (2008)CrossRef P. Simon, Y. Gogotsi: Materials for electrochemical capacitors, Nature Mater 7, 845 (2008)CrossRef
[11]
Zurück zum Zitat P.L. Taberna, P. Simon, J.F. Fauvarque: Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors, J. Electrochem. Soc. 150, A292 (2003)CrossRef P.L. Taberna, P. Simon, J.F. Fauvarque: Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors, J. Electrochem. Soc. 150, A292 (2003)CrossRef
[12]
Zurück zum Zitat R. De Levie: On porous electrodes in electrolyte solutions: I. Capacitance effects, Electrochim. Acta 8, 751 (1963)CrossRef R. De Levie: On porous electrodes in electrolyte solutions: I. Capacitance effects, Electrochim. Acta 8, 751 (1963)CrossRef
[13]
Zurück zum Zitat M.A.T. Keddam, F.M. Delnick, D. Ingerssol, X. Andrieu, K. Naoi (Eds.): Electrochemical Capacitors II, Electrochem. Soc., Vol. PV96-25 (ECS, Pennington 1996) p. 220 M.A.T. Keddam, F.M. Delnick, D. Ingerssol, X. Andrieu, K. Naoi (Eds.): Electrochemical Capacitors II, Electrochem. Soc., Vol. PV96-25 (ECS, Pennington 1996) p. 220
[14]
Zurück zum Zitat J.R. Miller: Pulse power performance of electrochemical capacitors: Technical status of present commercial devices, Proc. 8th Int. Semin. Double-Layer Capacitor Similar Energy Storage Devices, Deerfield Beach (1998) J.R. Miller: Pulse power performance of electrochemical capacitors: Technical status of present commercial devices, Proc. 8th Int. Semin. Double-Layer Capacitor Similar Energy Storage Devices, Deerfield Beach (1998)
[15]
Zurück zum Zitat J.R. Miller, A.F. Burke: Electrochemical capacitors: Challenges and opportunities for real-world applications, Electrochem. Soc. Interf. 17, 53 (2008) J.R. Miller, A.F. Burke: Electrochemical capacitors: Challenges and opportunities for real-world applications, Electrochem. Soc. Interf. 17, 53 (2008)
[16]
Zurück zum Zitat D. Bélanger: Polythiophenes as active electrode materials for electrochemical capacitors. In: Handbook of Thiophene-Based Materials, ed. by I.F. Perepichka, D. Perepichka (Wiley, New York 2009) pp. 577–594CrossRef D. Bélanger: Polythiophenes as active electrode materials for electrochemical capacitors. In: Handbook of Thiophene-Based Materials, ed. by I.F. Perepichka, D. Perepichka (Wiley, New York 2009) pp. 577–594CrossRef
[17]
Zurück zum Zitat T. Brousse, D. Bélanger: A hybrid Fe3O4MnO2 capacitor in mild aqueous electrolyte, Electrochem. Solid-State Lett. 6, A244 (2003)CrossRef T. Brousse, D. Bélanger: A hybrid Fe3O4MnO2 capacitor in mild aqueous electrolyte, Electrochem. Solid-State Lett. 6, A244 (2003)CrossRef
[18]
Zurück zum Zitat G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng: An asymmetric hybrid nonaqueous energy storage cell, J. Electrochem. Soc. 148, A930 (2001)CrossRef G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng: An asymmetric hybrid nonaqueous energy storage cell, J. Electrochem. Soc. 148, A930 (2001)CrossRef
[19]
Zurück zum Zitat A. Du Pasquier, A. Laforgue, P. Simon, G.G. Amatucci, J.-F. Fauvarque: A nonaqueous asymmetric hybrid Li4Ti5O12/poly(fluorophenylthiophene) energy storage device, J. Electrochem. Soc. 149, A302 (2002)CrossRef A. Du Pasquier, A. Laforgue, P. Simon, G.G. Amatucci, J.-F. Fauvarque: A nonaqueous asymmetric hybrid Li4Ti5O12/poly(fluorophenylthiophene) energy storage device, J. Electrochem. Soc. 149, A302 (2002)CrossRef
[20]
Zurück zum Zitat H. Li, L. Cheng, Y. Xia: A hybrid electrochemical supercapacitor based on a 5V Li-ion battery cathode and active carbon, Electrochem. Solid-State Lett. 8, A433 (2005)CrossRef H. Li, L. Cheng, Y. Xia: A hybrid electrochemical supercapacitor based on a 5V Li-ion battery cathode and active carbon, Electrochem. Solid-State Lett. 8, A433 (2005)CrossRef
[21]
Zurück zum Zitat T. Aida, K. Yamada, M. Morita: An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode, Electrochem. Solid-State Lett. 9, A534 (2006)CrossRef T. Aida, K. Yamada, M. Morita: An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode, Electrochem. Solid-State Lett. 9, A534 (2006)CrossRef
[22]
Zurück zum Zitat E. Frackowiak, F. Béguin: Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39, 937 (2001)CrossRef E. Frackowiak, F. Béguin: Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39, 937 (2001)CrossRef
[23]
Zurück zum Zitat T. Brousse, P.-L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger, P. Simon: Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor, J. Power Sources 173, 633 (2007)CrossRef T. Brousse, P.-L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger, P. Simon: Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor, J. Power Sources 173, 633 (2007)CrossRef
[24]
Zurück zum Zitat T. Brousse, M. Toupin, D. Bélanger: A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte, J. Electrochem. Soc. 151, A614 (2004)CrossRef T. Brousse, M. Toupin, D. Bélanger: A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte, J. Electrochem. Soc. 151, A614 (2004)CrossRef
[25]
Zurück zum Zitat D. Villers, D. Jobin, C. Soucy, D. Cossement, R. Chahine, L. Breau, D. Bélanger: The influence of the range of electroactivity and capacitance of conducting polymers on the performance of carbon conducting polymer hybrid supercapacitor, J. Electrochem. Soc. 150, A747 (2003)CrossRef D. Villers, D. Jobin, C. Soucy, D. Cossement, R. Chahine, L. Breau, D. Bélanger: The influence of the range of electroactivity and capacitance of conducting polymers on the performance of carbon conducting polymer hybrid supercapacitor, J. Electrochem. Soc. 150, A747 (2003)CrossRef
[26]
Zurück zum Zitat W.H. Jin, G.T. Cao, J.Y. Sun: Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution, J. Power Sources 175, 686 (2008)CrossRef W.H. Jin, G.T. Cao, J.Y. Sun: Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution, J. Power Sources 175, 686 (2008)CrossRef
[27]
Zurück zum Zitat J.Y. Luo, J.L. Liu, P. He, Y.Y. Xia: A novel LiTi2(PO4)3/MnO2 hybrid supercapacitor in lithium sulfate aqueous electrolyte, Electrochim. Acta 53, 8128 (2008)CrossRef J.Y. Luo, J.L. Liu, P. He, Y.Y. Xia: A novel LiTi2(PO4)3/MnO2 hybrid supercapacitor in lithium sulfate aqueous electrolyte, Electrochim. Acta 53, 8128 (2008)CrossRef
[28]
Zurück zum Zitat J. Li, X. Wang, Q. Huang, S. Gamboa, P.J. Sebastian: A new type of MnO2 · xH2O/CRF composite electrode for supercapacitors, J. Power Sources 160, 1501 (2006)CrossRef J. Li, X. Wang, Q. Huang, S. Gamboa, P.J. Sebastian: A new type of MnO2 · xH2O/CRF composite electrode for supercapacitors, J. Power Sources 160, 1501 (2006)CrossRef
[29]
Zurück zum Zitat Y. Wang, G. Cao: Developments in nanostructured cathode materials for high-performance lithium-ion batteries, Adv. Mater. 20, 2251 (2008)CrossRef Y. Wang, G. Cao: Developments in nanostructured cathode materials for high-performance lithium-ion batteries, Adv. Mater. 20, 2251 (2008)CrossRef
[30]
Zurück zum Zitat P.G. Bruce, B. Scrosati, J.-M. Tarascon: Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed. 47, 2930 (2007)CrossRef P.G. Bruce, B. Scrosati, J.-M. Tarascon: Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed. 47, 2930 (2007)CrossRef
[31]
Zurück zum Zitat M.G. Kim, J. Cho: Reversible and high-capacity nanostructured electrode materials for Li-ion batteries, Adv. Funct. Mater. 19, 1497–1514 (2009)CrossRef M.G. Kim, J. Cho: Reversible and high-capacity nanostructured electrode materials for Li-ion batteries, Adv. Funct. Mater. 19, 1497–1514 (2009)CrossRef
[32]
Zurück zum Zitat A.G. Pandolfo, A.F. Hollenkamp: Carbon properties and their role in supercapacitors, J. Power Sources 157, 11 (2006)CrossRef A.G. Pandolfo, A.F. Hollenkamp: Carbon properties and their role in supercapacitors, J. Power Sources 157, 11 (2006)CrossRef
[33]
Zurück zum Zitat B.T. Hsieh, H. Teng: Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon 40, 667 (2002)CrossRef B.T. Hsieh, H. Teng: Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon 40, 667 (2002)CrossRef
[34]
Zurück zum Zitat T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihara: Electric double-layer capacitor using organic electrolyte, J. Power Sources 60, 239 (1996)CrossRef T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihara: Electric double-layer capacitor using organic electrolyte, J. Power Sources 60, 239 (1996)CrossRef
[35]
Zurück zum Zitat A. Yoshida, I. Tanahashi, A. Nishino: Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers, Carbon 28, 611 (1990)CrossRef A. Yoshida, I. Tanahashi, A. Nishino: Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers, Carbon 28, 611 (1990)CrossRef
[36]
Zurück zum Zitat G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, E. Frackowiak: Effect of nitrogen in carbon electrode on the supercapacitor performance, Chem. Phys. Lett. 404, 53 (2005)CrossRef G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, E. Frackowiak: Effect of nitrogen in carbon electrode on the supercapacitor performance, Chem. Phys. Lett. 404, 53 (2005)CrossRef
[37]
Zurück zum Zitat D.W. Wang, F. Li, Z.G. Chen, G.Q. Lu, H.M. Cheng: Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor, Chem. Mater. 20, 7195 (2008)CrossRef D.W. Wang, F. Li, Z.G. Chen, G.Q. Lu, H.M. Cheng: Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor, Chem. Mater. 20, 7195 (2008)CrossRef
[38]
Zurück zum Zitat O. Barbieri, M. Hahn, A. Herzog, R. Kötz: Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon 43, 1303 (2005)CrossRef O. Barbieri, M. Hahn, A. Herzog, R. Kötz: Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon 43, 1303 (2005)CrossRef
[39]
Zurück zum Zitat J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau: Studies and characterizations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources 101, 109 (2001)CrossRef J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau: Studies and characterizations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources 101, 109 (2001)CrossRef
[40]
Zurück zum Zitat H. Shi: Activated carbons and double layer capacitance, Electrochim. Acta 41, 1633 (1995)CrossRef H. Shi: Activated carbons and double layer capacitance, Electrochim. Acta 41, 1633 (1995)CrossRef
[41]
Zurück zum Zitat R. Lin, P.L. Taberna, J. Chmiola, D. Guay, Y. Gogotsi, P. Simon: Microelectrode study of pore size, ion size, and solvent effects on the charge/discharge behavior of microporous carbons for electrical double-layer capacitors, J. Electrochem. Soc. 156, A7 (2009)CrossRef R. Lin, P.L. Taberna, J. Chmiola, D. Guay, Y. Gogotsi, P. Simon: Microelectrode study of pore size, ion size, and solvent effects on the charge/discharge behavior of microporous carbons for electrical double-layer capacitors, J. Electrochem. Soc. 156, A7 (2009)CrossRef
[42]
Zurück zum Zitat S.A. Al-Muhtaseb, J.A. Ritter: Preparation and properties of resorcinolâ formaldehyde organic and carbon gels, Adv. Mater. 15, 101 (2003)CrossRef S.A. Al-Muhtaseb, J.A. Ritter: Preparation and properties of resorcinolâ formaldehyde organic and carbon gels, Adv. Mater. 15, 101 (2003)CrossRef
[43]
Zurück zum Zitat N. Job, A. Thery, R. Pirard, J. Marien, L. Kocon, J.N. Rouzaud, F. Béguin, J.P. Pirard: Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials, Carbon 43, 2481 (2005)CrossRef N. Job, A. Thery, R. Pirard, J. Marien, L. Kocon, J.N. Rouzaud, F. Béguin, J.P. Pirard: Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials, Carbon 43, 2481 (2005)CrossRef
[44]
Zurück zum Zitat R.W. Pekala, D.W. Schaefer: Structure of organic aerogels. 1. Morphology and scaling, Macromolecules 26, 5487 (1993)CrossRef R.W. Pekala, D.W. Schaefer: Structure of organic aerogels. 1. Morphology and scaling, Macromolecules 26, 5487 (1993)CrossRef
[45]
Zurück zum Zitat S.T. Mayer, R.W. Pekala, J.L. Kaschmitter: The aerocapacitor: An electrochemical double-layer energy-storage device, J. Electrochem. Soc. 140, 446 (1993)CrossRef S.T. Mayer, R.W. Pekala, J.L. Kaschmitter: The aerocapacitor: An electrochemical double-layer energy-storage device, J. Electrochem. Soc. 140, 446 (1993)CrossRef
[46]
Zurück zum Zitat R.W. Pekala, J.C. Farmer, C.T. Alviso, T.D. Tran, S.T. Mayer, J.M. Miller, B. Dunn: Carbon aerogels for electrochemical applications, J. Non-Cryst. Solids 225, 74 (1998)CrossRef R.W. Pekala, J.C. Farmer, C.T. Alviso, T.D. Tran, S.T. Mayer, J.M. Miller, B. Dunn: Carbon aerogels for electrochemical applications, J. Non-Cryst. Solids 225, 74 (1998)CrossRef
[47]
Zurück zum Zitat R. Saliger, V. Bock, R. Petricevic, T. Tillotson, S. Geis, J. Fricke: Carbon aerogels from dilute catalysis of resorcinol with formaldehyde, J. Non-Cryst. Solids 221, 144 (1997)CrossRef R. Saliger, V. Bock, R. Petricevic, T. Tillotson, S. Geis, J. Fricke: Carbon aerogels from dilute catalysis of resorcinol with formaldehyde, J. Non-Cryst. Solids 221, 144 (1997)CrossRef
[48]
Zurück zum Zitat R. Saliger, U. Fischer, C. Herta, J. Fricke: High surface area carbon aerogels for supercapacitors, J. Non-Cryst. Solids 225, 81 (1998)CrossRef R. Saliger, U. Fischer, C. Herta, J. Fricke: High surface area carbon aerogels for supercapacitors, J. Non-Cryst. Solids 225, 81 (1998)CrossRef
[49]
Zurück zum Zitat J. Li, X.Y. Wang, Y. Wang, Q.H. Huang, C.L. Dai, S. Gamboa, P.J. Sebastian: Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors, J. Non-Cryst. Solids 354, 19 (2008)CrossRef J. Li, X.Y. Wang, Y. Wang, Q.H. Huang, C.L. Dai, S. Gamboa, P.J. Sebastian: Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors, J. Non-Cryst. Solids 354, 19 (2008)CrossRef
[50]
Zurück zum Zitat T.F. Baumann, M.A. Worsley, T.Y.J. Han, J.H. Satcher: High surface area carbon aerogel monoliths with hierarchical porosity, J. Non-Cryst. Solids 354, 3513 (2008)CrossRef T.F. Baumann, M.A. Worsley, T.Y.J. Han, J.H. Satcher: High surface area carbon aerogel monoliths with hierarchical porosity, J. Non-Cryst. Solids 354, 3513 (2008)CrossRef
[51]
Zurück zum Zitat B.B. Garcia, A.M. Feaver, Q.F. Zhang, R.D. Champion, G.Z. Cao, T.T. Fister, K.P. Nagle, G.T. Seidler: Effect of pore morphology on the electrochemical properties of electric double layer carbon cryogel supercapacitors, J. Appl. Phys. 104, 014305 (2008)CrossRef B.B. Garcia, A.M. Feaver, Q.F. Zhang, R.D. Champion, G.Z. Cao, T.T. Fister, K.P. Nagle, G.T. Seidler: Effect of pore morphology on the electrochemical properties of electric double layer carbon cryogel supercapacitors, J. Appl. Phys. 104, 014305 (2008)CrossRef
[52]
Zurück zum Zitat K.L. Yang, S. Yiacoumi, C. Tsouris: Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry, J. Electroanalyt. Chem. 540, 159 (2003)CrossRef K.L. Yang, S. Yiacoumi, C. Tsouris: Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry, J. Electroanalyt. Chem. 540, 159 (2003)CrossRef
[53]
Zurück zum Zitat B.Z. Fang, L. Binder: A modified activated carbon aerogel for high-energy storage in electric double layer capacitors, J. Power Sources 163, 616 (2006)CrossRef B.Z. Fang, L. Binder: A modified activated carbon aerogel for high-energy storage in electric double layer capacitors, J. Power Sources 163, 616 (2006)CrossRef
[54]
Zurück zum Zitat T. Bordjiba, M. Mohamedi, L.H. Dao: New class of carbon-nanotube aerogel electrodes for electrochemical power sources, Adv. Mater. 20, 815 (2008)CrossRef T. Bordjiba, M. Mohamedi, L.H. Dao: New class of carbon-nanotube aerogel electrodes for electrochemical power sources, Adv. Mater. 20, 815 (2008)CrossRef
[55]
Zurück zum Zitat H. Pröbstle, C. Schmitt, J. Fricke: Button cell supercapacitors with monolithic carbon aerogels, J. Power Sources 105, 189 (2002)CrossRef H. Pröbstle, C. Schmitt, J. Fricke: Button cell supercapacitors with monolithic carbon aerogels, J. Power Sources 105, 189 (2002)CrossRef
[56]
Zurück zum Zitat H. Pröbstle, M. Wiener, J. Fricke: Carbon aerogels for electrochemical double layer capacitors, J. Porous Mater. 10, 213 (2003)CrossRef H. Pröbstle, M. Wiener, J. Fricke: Carbon aerogels for electrochemical double layer capacitors, J. Porous Mater. 10, 213 (2003)CrossRef
[57]
Zurück zum Zitat C. Schmitt, H. Pröbstle, J. Fricke: Carbon cloth-reinforced and activated aerogel films for supercapacitors, J. Non-Cryst. Solids 285, 277 (2001)CrossRef C. Schmitt, H. Pröbstle, J. Fricke: Carbon cloth-reinforced and activated aerogel films for supercapacitors, J. Non-Cryst. Solids 285, 277 (2001)CrossRef
[58]
Zurück zum Zitat J.W. Long, D.R. Rolison: Architectural design, interior decoration, and three-dimensional plumbing en route to multifunctional nanoarchitectures, Acc. Chem. Res. 40, 854 (2007)CrossRef J.W. Long, D.R. Rolison: Architectural design, interior decoration, and three-dimensional plumbing en route to multifunctional nanoarchitectures, Acc. Chem. Res. 40, 854 (2007)CrossRef
[59]
Zurück zum Zitat D.R. Rolison, R.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes, T.M. McEvoy, M.E. Bourga, A.M. Lubers: Multifunctional 3D nanoarchitectures for energy storage and conversion, Chem. Soc. Rev. 38, 226 (2009)CrossRef D.R. Rolison, R.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes, T.M. McEvoy, M.E. Bourga, A.M. Lubers: Multifunctional 3D nanoarchitectures for energy storage and conversion, Chem. Soc. Rev. 38, 226 (2009)CrossRef
[60]
Zurück zum Zitat J.W. Long, B.M. Dening, T.M. McEvoy, D.R. Rolison: Carbon aerogels with ultrathin, electroactive poly( o-methoxyaniline) coatings for high-performance electrochemical capacitors, J. Non-Cryst. Solids 350, 97 (2004)CrossRef J.W. Long, B.M. Dening, T.M. McEvoy, D.R. Rolison: Carbon aerogels with ultrathin, electroactive poly( o-methoxyaniline) coatings for high-performance electrochemical capacitors, J. Non-Cryst. Solids 350, 97 (2004)CrossRef
[61]
Zurück zum Zitat H. Talbi, P.E. Just, L.H. Dao: Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes: Applications for supercapacitors, J. Appl. Electrochem. 33, 465 (2003)CrossRef H. Talbi, P.E. Just, L.H. Dao: Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes: Applications for supercapacitors, J. Appl. Electrochem. 33, 465 (2003)CrossRef
[62]
Zurück zum Zitat A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, J.W. Long: Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors, Nano Lett. 7, 281 (2007)CrossRef A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, J.W. Long: Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors, Nano Lett. 7, 281 (2007)CrossRef
[63]
Zurück zum Zitat A.E. Fischer, M.P. Saunders, K.A. Pettigrew, D.R. Rolison, J.W. Long: Electroless deposition of nanoscale MnO2 on ultraporous carbon nanoarchitectures: Correlation of evolving pore-solid structure and electrochemical performance, J. Electrochem. Soc. 155, A246 (2008)CrossRef A.E. Fischer, M.P. Saunders, K.A. Pettigrew, D.R. Rolison, J.W. Long: Electroless deposition of nanoscale MnO2 on ultraporous carbon nanoarchitectures: Correlation of evolving pore-solid structure and electrochemical performance, J. Electrochem. Soc. 155, A246 (2008)CrossRef
[64]
Zurück zum Zitat J.M. Miller, B. Dunn, T.D. Tran, R.W. Pekala: Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes, J. Electrochem. Soc. 144, L309 (1997)CrossRef J.M. Miller, B. Dunn, T.D. Tran, R.W. Pekala: Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes, J. Electrochem. Soc. 144, L309 (1997)CrossRef
[65]
Zurück zum Zitat A.B. Fuertes, G. Lota, T.A. Centeno, E. Frackowiak: Templated mesoporous carbons for supercapacitor application, Electrochim. Acta 50, 2799 (2005)CrossRef A.B. Fuertes, G. Lota, T.A. Centeno, E. Frackowiak: Templated mesoporous carbons for supercapacitor application, Electrochim. Acta 50, 2799 (2005)CrossRef
[66]
Zurück zum Zitat C. Vix-Guterl, S. Saadallah, K. Jurewicz, E. Frackowiak, M. Reda, J. Parmentier, J. Patarin, F. Béguin: Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure, Mater. Sci. Eng. B 108, 148 (2004)CrossRef C. Vix-Guterl, S. Saadallah, K. Jurewicz, E. Frackowiak, M. Reda, J. Parmentier, J. Patarin, F. Béguin: Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure, Mater. Sci. Eng. B 108, 148 (2004)CrossRef
[67]
Zurück zum Zitat A.B. Fuertes: Template synthesis of mesoporous carbons with a controlled particle size, J. Mater. Chem. 13, 3085 (2003)CrossRef A.B. Fuertes: Template synthesis of mesoporous carbons with a controlled particle size, J. Mater. Chem. 13, 3085 (2003)CrossRef
[68]
Zurück zum Zitat T.A. Centeno, M. Sevilla, A.B. Fuertes, F. Stoeckli: On the electrical double-layer capacitance of mesoporous templated carbons, Carbon 43, 3012 (2005)CrossRef T.A. Centeno, M. Sevilla, A.B. Fuertes, F. Stoeckli: On the electrical double-layer capacitance of mesoporous templated carbons, Carbon 43, 3012 (2005)CrossRef
[69]
Zurück zum Zitat K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, A. Reda, J. Parmentier, J. Patarin, F. Béguin: Capacitance properties of ordered porous carbon materials prepared by a templating procedure, J. Phys. Chem. Solids 65, 287 (2004)CrossRef K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, A. Reda, J. Parmentier, J. Patarin, F. Béguin: Capacitance properties of ordered porous carbon materials prepared by a templating procedure, J. Phys. Chem. Solids 65, 287 (2004)CrossRef
[70]
Zurück zum Zitat H. Zhou, S. Zhu, M. Hibino, I. Honma: Electrochemical capacitance of self-ordered mesoporous carbon, J. Power Sources 122, 219 (2003)CrossRef H. Zhou, S. Zhu, M. Hibino, I. Honma: Electrochemical capacitance of self-ordered mesoporous carbon, J. Power Sources 122, 219 (2003)CrossRef
[71]
Zurück zum Zitat M. Sevilla, S. Alvarez, T.A. Centeno, A.B. Fuertes, F. Stoeckli: Performance of templated mesoporous carbons in supercapacitors, Electrochim. Acta 52, 3207 (2007)CrossRef M. Sevilla, S. Alvarez, T.A. Centeno, A.B. Fuertes, F. Stoeckli: Performance of templated mesoporous carbons in supercapacitors, Electrochim. Acta 52, 3207 (2007)CrossRef
[72]
Zurück zum Zitat J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi: Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power Sources 158, 765 (2006)CrossRef J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi: Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power Sources 158, 765 (2006)CrossRef
[73]
Zurück zum Zitat G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurback: Carbon electrodes for double-layer capacitors. I. relations between ion and pore dimensions, J. Electrochem. Soc. 147, 2486 (2000)CrossRef G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurback: Carbon electrodes for double-layer capacitors. I. relations between ion and pore dimensions, J. Electrochem. Soc. 147, 2486 (2000)CrossRef
[74]
Zurück zum Zitat C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Béguin: Electrochemical energy storage in ordered porous carbon materials, Carbon 43, 1293 (2005)CrossRef C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Béguin: Electrochemical energy storage in ordered porous carbon materials, Carbon 43, 1293 (2005)CrossRef
[75]
Zurück zum Zitat J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.-L. Taberna: Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science 313, 1760 (2006)CrossRef J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.-L. Taberna: Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science 313, 1760 (2006)CrossRef
[76]
Zurück zum Zitat J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi: Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory, Angew. Chem. Int. Ed. 47, 3392 (2008)CrossRef J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi: Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory, Angew. Chem. Int. Ed. 47, 3392 (2008)CrossRef
[77]
Zurück zum Zitat D. Aurbach, M.D. Levi, G. Salitra, N. Levy, E. Pollak, J. Muthu: Cation trapping in highly porous carbon electrodes for EDLC cells, J. Electrochem. Soc. 155, A745 (2008)CrossRef D. Aurbach, M.D. Levi, G. Salitra, N. Levy, E. Pollak, J. Muthu: Cation trapping in highly porous carbon electrodes for EDLC cells, J. Electrochem. Soc. 155, A745 (2008)CrossRef
[78]
Zurück zum Zitat R. Mysyk, E. Raymundo-Piñero, F. Béguin: Saturation of subnanometer pores in an electric double-layer capacitor, Electrochem. Commun. 11, 554 (2009)CrossRef R. Mysyk, E. Raymundo-Piñero, F. Béguin: Saturation of subnanometer pores in an electric double-layer capacitor, Electrochem. Commun. 11, 554 (2009)CrossRef
[79]
Zurück zum Zitat C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon: Relation between the ion size and pore size for an electric double-layer capacitor, J. Am. Chem. Soc. 130, 2730 (2008)CrossRef C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon: Relation between the ion size and pore size for an electric double-layer capacitor, J. Am. Chem. Soc. 130, 2730 (2008)CrossRef
[80]
Zurück zum Zitat G. Feng, J. Huang, B.G. Sumpter, V. Meunier, R. Qiao: Structure and dynamics of electrical double layers in organic electrolytes, Phys. Chem. Chem. Phys. 12, 5468 (2010)CrossRef G. Feng, J. Huang, B.G. Sumpter, V. Meunier, R. Qiao: Structure and dynamics of electrical double layers in organic electrolytes, Phys. Chem. Chem. Phys. 12, 5468 (2010)CrossRef
[81]
Zurück zum Zitat J.S. Huang, B.G. Sumpter, V. Meunier: Theoretical model for nanoporous carbon supercapacitors, Angew. Chem. Int. Ed. 47, 520 (2008)CrossRef J.S. Huang, B.G. Sumpter, V. Meunier: Theoretical model for nanoporous carbon supercapacitors, Angew. Chem. Int. Ed. 47, 520 (2008)CrossRef
[82]
Zurück zum Zitat J.S. Huang, B.G. Sumpter, V. Meunier: A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes, Chemistry-A Eur. J. 14, 6614 (2008)CrossRef J.S. Huang, B.G. Sumpter, V. Meunier: A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes, Chemistry-A Eur. J. 14, 6614 (2008)CrossRef
[83]
Zurück zum Zitat D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem. Int. Ed. 47, 373 (2008)CrossRef D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem. Int. Ed. 47, 373 (2008)CrossRef
[84]
Zurück zum Zitat C. Liu, H.M. Cheng: Carbon nanotubes for clean energy applications, J, Phys. D 38, R231 (2005)CrossRef C. Liu, H.M. Cheng: Carbon nanotubes for clean energy applications, J, Phys. D 38, R231 (2005)CrossRef
[85]
Zurück zum Zitat T. Kim, S. Lim, K. Kwon, S.-H. Hong, W. Qiao, C.K. Rhee, S.-H. Yoon, I. Mochida: Electrochemical capacitances of well-defined carbon surfaces, Langmuir 22, 9086 (2006)CrossRef T. Kim, S. Lim, K. Kwon, S.-H. Hong, W. Qiao, C.K. Rhee, S.-H. Yoon, I. Mochida: Electrochemical capacitances of well-defined carbon surfaces, Langmuir 22, 9086 (2006)CrossRef
[86]
Zurück zum Zitat V. Subramanian, H.W. Zhu, B.Q. Wei: High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers, J. Phys. Chem. B 110, 7178 (2006)CrossRef V. Subramanian, H.W. Zhu, B.Q. Wei: High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers, J. Phys. Chem. B 110, 7178 (2006)CrossRef
[87]
Zurück zum Zitat E. Frackowiak, F. Béguin: Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon 40, 1775 (2002)CrossRef E. Frackowiak, F. Béguin: Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon 40, 1775 (2002)CrossRef
[88]
Zurück zum Zitat D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nat. Mater. 5, 987 (2006)CrossRef D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nat. Mater. 5, 987 (2006)CrossRef
[89]
Zurück zum Zitat S. Talapatra, S. Kar, S.K. Pal, R. Vajtai, L. Ci, P. Victor, M.M. Shaijumon, S. Kaur, O. Nalamasu, P.M. Ajayan: Direct growth of aligned carbon nanotubes on bulk metals, Nat. Nanotechnol. 1, 112 (2006)CrossRef S. Talapatra, S. Kar, S.K. Pal, R. Vajtai, L. Ci, P. Victor, M.M. Shaijumon, S. Kaur, O. Nalamasu, P.M. Ajayan: Direct growth of aligned carbon nanotubes on bulk metals, Nat. Nanotechnol. 1, 112 (2006)CrossRef
[90]
Zurück zum Zitat Y. Honda, T. Ono, M. Takeshige, N. Morihara, H. Shiozaki, T. Kitamura, K. Yoshikawa, M. Morita, M. Yamagata, M. Ishikawa: Effect of MWCNT bundle structure on electric double-layer capacitor performance, Electrochem. Solid-State Lett. 12, A45 (2009)CrossRef Y. Honda, T. Ono, M. Takeshige, N. Morihara, H. Shiozaki, T. Kitamura, K. Yoshikawa, M. Morita, M. Yamagata, M. Ishikawa: Effect of MWCNT bundle structure on electric double-layer capacitor performance, Electrochem. Solid-State Lett. 12, A45 (2009)CrossRef
[91]
Zurück zum Zitat Y. Honda, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa: Excellent frequency response of vertically aligned MWCNT electrode for EDLC, Electrochemistry 75, 586 (2007)CrossRef Y. Honda, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa: Excellent frequency response of vertically aligned MWCNT electrode for EDLC, Electrochemistry 75, 586 (2007)CrossRef
[92]
Zurück zum Zitat Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa: Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance, Electrochem. Solid-State Lett. 10, A106 (2007)CrossRef Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa: Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance, Electrochem. Solid-State Lett. 10, A106 (2007)CrossRef
[93]
Zurück zum Zitat H. Zhang, G.P. Cao, Y.S. Yang: Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte, J. Power Sources 172, 476 (2007)CrossRef H. Zhang, G.P. Cao, Y.S. Yang: Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte, J. Power Sources 172, 476 (2007)CrossRef
[94]
Zurück zum Zitat A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan: Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries, Nano Lett. 9, 1002 (2009)CrossRef A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan: Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries, Nano Lett. 9, 1002 (2009)CrossRef
[95]
Zurück zum Zitat H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu: Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage, Nano Lett. 8, 2664 (2008)CrossRef H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu: Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage, Nano Lett. 8, 2664 (2008)CrossRef
[96]
Zurück zum Zitat W.G. Pell, B.E. Conway: Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes, J. Power Sources 136, 334 (2004)CrossRef W.G. Pell, B.E. Conway: Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes, J. Power Sources 136, 334 (2004)CrossRef
[97]
Zurück zum Zitat J.P. Zheng: The limitations of energy density of battery/double-layer capacitor asymmetric cells, J. Electrochem. Soc. 150, A484 (2003)CrossRef J.P. Zheng: The limitations of energy density of battery/double-layer capacitor asymmetric cells, J. Electrochem. Soc. 150, A484 (2003)CrossRef
[98]
Zurück zum Zitat F. Béguin, K. Kierzek, M. Friebe, A. Jankowska, J. Machnikowski, K. Jurewicz, E. Frackowiak: Effect of various porous nanotextures on the reversible electrochemical sorption of hydrogen in activated carbons, Electrochim. Acta 51, 2161 (2006)CrossRef F. Béguin, K. Kierzek, M. Friebe, A. Jankowska, J. Machnikowski, K. Jurewicz, E. Frackowiak: Effect of various porous nanotextures on the reversible electrochemical sorption of hydrogen in activated carbons, Electrochim. Acta 51, 2161 (2006)CrossRef
[99]
Zurück zum Zitat B.E. Conway, H.A. Andreas, W. Pell: Specific ion effects on double layer capacitance of a C-Cloth electrode showing extended charge acceptance, Proc. 14th Double Layer Capacitor Semin., Deerfield Beach (2004) B.E. Conway, H.A. Andreas, W. Pell: Specific ion effects on double layer capacitance of a C-Cloth electrode showing extended charge acceptance, Proc. 14th Double Layer Capacitor Semin., Deerfield Beach (2004)
[100]
Zurück zum Zitat X. Qin, X.P. Gao, H. Liu, H.T. Yuan, D.Y. Yan, W.L. Gong, D.Y. Song: Electrochemical hydrogen storage of multiwalled carbon nanotubes, Electrochem. Solid-State Lett. 3, 532–535 (2000), pp. 155–176CrossRef X. Qin, X.P. Gao, H. Liu, H.T. Yuan, D.Y. Yan, W.L. Gong, D.Y. Song: Electrochemical hydrogen storage of multiwalled carbon nanotubes, Electrochem. Solid-State Lett. 3, 532–535 (2000), pp. 155–176CrossRef
[101]
Zurück zum Zitat K. Jurewicz, E. Frackowiak, F. Béguin: Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials, Appl. Phys. A 78, 981 (2004)CrossRef K. Jurewicz, E. Frackowiak, F. Béguin: Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials, Appl. Phys. A 78, 981 (2004)CrossRef
[102]
Zurück zum Zitat F. Béguin, M. Friebe, K. Jurewicz, C. Vix-Guterl, J. Dentzer, E. Frackowiak: State of hydrogen electrochemically stored using nanoporous carbons as negative electrode materials in an aqueous medium, Carbon 44, 2392 (2006)CrossRef F. Béguin, M. Friebe, K. Jurewicz, C. Vix-Guterl, J. Dentzer, E. Frackowiak: State of hydrogen electrochemically stored using nanoporous carbons as negative electrode materials in an aqueous medium, Carbon 44, 2392 (2006)CrossRef
[103]
Zurück zum Zitat F. Béguin, K. Jurewicz, M. Friebe, E. Frackowiak: Advantages of electrochemical hydrogen storage over gas adsorption in nanoporous carbons, Ann. Chim. Sci. Mater. 30, 531 (2005)CrossRef F. Béguin, K. Jurewicz, M. Friebe, E. Frackowiak: Advantages of electrochemical hydrogen storage over gas adsorption in nanoporous carbons, Ann. Chim. Sci. Mater. 30, 531 (2005)CrossRef
[104]
Zurück zum Zitat E. Frackowiak, K. Jurewicz, K. Szostak, S. Delpeux, F. Béguin: Nanotubular materials as electrodes for supercapacitors, Fuel Process. Technol. 77, 213 (2002)CrossRef E. Frackowiak, K. Jurewicz, K. Szostak, S. Delpeux, F. Béguin: Nanotubular materials as electrodes for supercapacitors, Fuel Process. Technol. 77, 213 (2002)CrossRef
[105]
Zurück zum Zitat K. Jurewicz, E. Frackowiak, F. Béguin: Enhancement of reversible hydrogen capacity into activated carbon through water electrolysis, Electrochem. Solid-State Lett. 4, A27 (2001)CrossRef K. Jurewicz, E. Frackowiak, F. Béguin: Enhancement of reversible hydrogen capacity into activated carbon through water electrolysis, Electrochem. Solid-State Lett. 4, A27 (2001)CrossRef
[106]
Zurück zum Zitat C. Nützenadel, A. Zuttel, D. Chartouni, L. Schlapbach: Electrochemical Storage of hydrogen in nanotube materials, Electrochem. Solid-State Lett. 2, 30 (1999)CrossRef C. Nützenadel, A. Zuttel, D. Chartouni, L. Schlapbach: Electrochemical Storage of hydrogen in nanotube materials, Electrochem. Solid-State Lett. 2, 30 (1999)CrossRef
[107]
Zurück zum Zitat M.J. Bleda-Martínez, J.M. Pérez, A. Linares-Solana, E. Morallón, D. Cazorla-Amorós: Effect of surface chemistry on electrochemical storage of hydrogen in porous carbon materials, Carbon 46, 1053 (2008)CrossRef M.J. Bleda-Martínez, J.M. Pérez, A. Linares-Solana, E. Morallón, D. Cazorla-Amorós: Effect of surface chemistry on electrochemical storage of hydrogen in porous carbon materials, Carbon 46, 1053 (2008)CrossRef
[108]
Zurück zum Zitat D.Y. Qu: Mechanism for electrochemical hydrogen insertion in carbonaceous materials, J. Power Sources 179, 310 (2008)CrossRef D.Y. Qu: Mechanism for electrochemical hydrogen insertion in carbonaceous materials, J. Power Sources 179, 310 (2008)CrossRef
[109]
Zurück zum Zitat Y. Chabre, J. Pannetier: Structural and electrochemical properties of the proton/γ-MnO2 system, Prog. Solid State Chem. 23, 1 (1995)CrossRef Y. Chabre, J. Pannetier: Structural and electrochemical properties of the proton/γ-MnO2 system, Prog. Solid State Chem. 23, 1 (1995)CrossRef
[110]
Zurück zum Zitat M. Thackeray: Manganese oxides for lithium batteries, Prog. Solid State Chem. 25, 1 (1997)CrossRef M. Thackeray: Manganese oxides for lithium batteries, Prog. Solid State Chem. 25, 1 (1997)CrossRef
[111]
Zurück zum Zitat J.P. Zheng, T.R. Jow: A new charge storage mechanism for electrochemical capacitors, J. Electrochem. Soc. 142, L6 (1995)CrossRef J.P. Zheng, T.R. Jow: A new charge storage mechanism for electrochemical capacitors, J. Electrochem. Soc. 142, L6 (1995)CrossRef
[112]
Zurück zum Zitat D. Bélanger, T. Brousse, J.W. Long: Manganese oxides: Battery materials make the leap to electrochemical capacitors, Electrochem. Soc. Interf. 17, 49 (2008) D. Bélanger, T. Brousse, J.W. Long: Manganese oxides: Battery materials make the leap to electrochemical capacitors, Electrochem. Soc. Interf. 17, 49 (2008)
[113]
Zurück zum Zitat H.Y. Lee, V. Manivannan, J.B. Goodenough: Electrochemical capacitors with KCl electrolyte, C.R. Acad. Sci. Paris 2(IIc), 565 (1999) H.Y. Lee, V. Manivannan, J.B. Goodenough: Electrochemical capacitors with KCl electrolyte, C.R. Acad. Sci. Paris 2(IIc), 565 (1999)
[114]
Zurück zum Zitat H.Y. Lee, J.B. Goodenough: Supercapacitor behavior with KCl electrolyte, J. Solid-State Chem. 144, 220 (1999)CrossRef H.Y. Lee, J.B. Goodenough: Supercapacitor behavior with KCl electrolyte, J. Solid-State Chem. 144, 220 (1999)CrossRef
[115]
Zurück zum Zitat Q. Feng, H. Kanoh, K. Ooi: Manganese oxide porous crystals, J. Mater. Chem. 9, 319 (1999)CrossRef Q. Feng, H. Kanoh, K. Ooi: Manganese oxide porous crystals, J. Mater. Chem. 9, 319 (1999)CrossRef
[116]
Zurück zum Zitat P. Strobel, C. Mouget: Electrochemical lithium insertion into layered manganates, Mater. Res. Bull. 28, 93 (1993)CrossRef P. Strobel, C. Mouget: Electrochemical lithium insertion into layered manganates, Mater. Res. Bull. 28, 93 (1993)CrossRef
[117]
Zurück zum Zitat R.G. Burns, V.M. Burns: Manganese Dioxide Symposium, Vol. 2 (Electrochem. Society, Pennington 1981) p. 97 R.G. Burns, V.M. Burns: Manganese Dioxide Symposium, Vol. 2 (Electrochem. Society, Pennington 1981) p. 97
[118]
Zurück zum Zitat Q. Feng, K. Yanagizawa, N. Yamasaki: Hydrothermal soft chemical process for synthesis of manganese oxides with tunnel structures, J. Porous Mater. 5, 153 (1998)CrossRef Q. Feng, K. Yanagizawa, N. Yamasaki: Hydrothermal soft chemical process for synthesis of manganese oxides with tunnel structures, J. Porous Mater. 5, 153 (1998)CrossRef
[119]
Zurück zum Zitat T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, D. Bélanger: Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors, J. Electrochem. Soc. 153, A2171 (2006)CrossRef T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, D. Bélanger: Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors, J. Electrochem. Soc. 153, A2171 (2006)CrossRef
[120]
Zurück zum Zitat S. Devaraj, N. Munichandraiah: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J. Phys. Chem. C 112, 4406 (2008)CrossRef S. Devaraj, N. Munichandraiah: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J. Phys. Chem. C 112, 4406 (2008)CrossRef
[121]
Zurück zum Zitat E. Machefaux, T. Brousse, D. Bélanger, D. Guyomard: Supercapacitor behavior of new substituted manganese dioxides, J. Power Sources 165, 651 (2007)CrossRef E. Machefaux, T. Brousse, D. Bélanger, D. Guyomard: Supercapacitor behavior of new substituted manganese dioxides, J. Power Sources 165, 651 (2007)CrossRef
[122]
Zurück zum Zitat A. Zolfaghari, F. Ataherian, M. Ghaemi, A. Gholami: Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method, Electrochim. Acta 52, 2806 (2007)CrossRef A. Zolfaghari, F. Ataherian, M. Ghaemi, A. Gholami: Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method, Electrochim. Acta 52, 2806 (2007)CrossRef
[123]
Zurück zum Zitat P. Staiti, F. Lufrano: Study and optimisation of manganese oxide-based electrodes for electrochemical supercapacitors, J. Power Sources 187, 284 (2009)CrossRef P. Staiti, F. Lufrano: Study and optimisation of manganese oxide-based electrodes for electrochemical supercapacitors, J. Power Sources 187, 284 (2009)CrossRef
[124]
Zurück zum Zitat M.W. Xu, D.D. Zhao, S.J. Bao, H.L. Li: Mesoporous amorphous MnO2 as electrode material for supercapacitor, J. Solid State Electrochem. 11, 1101 (2007)CrossRef M.W. Xu, D.D. Zhao, S.J. Bao, H.L. Li: Mesoporous amorphous MnO2 as electrode material for supercapacitor, J. Solid State Electrochem. 11, 1101 (2007)CrossRef
[125]
Zurück zum Zitat P. Ragupathy, H.N. Vasan, N. Munichandraiah: Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies, J. Electrochem. Soc. 155, A34 (2008)CrossRef P. Ragupathy, H.N. Vasan, N. Munichandraiah: Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies, J. Electrochem. Soc. 155, A34 (2008)CrossRef
[126]
Zurück zum Zitat L. Athouël, F. Moser, R. Dugas, O. Crosnier, D. Bélanger, T. Brousse: Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte, J. Phys. Chem. C 112, 7270 (2008)CrossRef L. Athouël, F. Moser, R. Dugas, O. Crosnier, D. Bélanger, T. Brousse: Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte, J. Phys. Chem. C 112, 7270 (2008)CrossRef
[127]
Zurück zum Zitat M. Toupin, T. Brousse, D. Bélanger: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chem. Mater. 16, 3184 (2004)CrossRef M. Toupin, T. Brousse, D. Bélanger: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chem. Mater. 16, 3184 (2004)CrossRef
[128]
Zurück zum Zitat M. Toupin, T. Brousse, D. Bélanger: Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide, Chem. Mater. 14, 3946 (2002)CrossRef M. Toupin, T. Brousse, D. Bélanger: Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide, Chem. Mater. 14, 3946 (2002)CrossRef
[129]
Zurück zum Zitat Y.U. Jeong, A. Manthiram: Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes, J. Electrochem. Soc. 149, A1419 (2002)CrossRef Y.U. Jeong, A. Manthiram: Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes, J. Electrochem. Soc. 149, A1419 (2002)CrossRef
[130]
Zurück zum Zitat R.N. Reddy, R.G. Reddy: Sol–gel MnO2 as an electrode material for electrochemical capacitors, J. Power Sources 124, 330 (2003)CrossRef R.N. Reddy, R.G. Reddy: Sol–gel MnO2 as an electrode material for electrochemical capacitors, J. Power Sources 124, 330 (2003)CrossRef
[131]
Zurück zum Zitat R.N. Reddy, R.G. Reddy: Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material, J. Power Sources 132, 315 (2004)CrossRef R.N. Reddy, R.G. Reddy: Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material, J. Power Sources 132, 315 (2004)CrossRef
[132]
Zurück zum Zitat C. Xu, B. Li, H. Du, F. Kang, Y. Zeng: Supercapacitive studies on amorphous MnO2 in mild solutions, J. Power Sources 184, 691 (2008)CrossRef C. Xu, B. Li, H. Du, F. Kang, Y. Zeng: Supercapacitive studies on amorphous MnO2 in mild solutions, J. Power Sources 184, 691 (2008)CrossRef
[133]
Zurück zum Zitat R. Jiang, T. Huang, J. Liu, J. Zhuang, A. Yu: A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode, Electrochim. Acta 54, 3047 (2009)CrossRef R. Jiang, T. Huang, J. Liu, J. Zhuang, A. Yu: A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode, Electrochim. Acta 54, 3047 (2009)CrossRef
[134]
Zurück zum Zitat H.Y. Lee, S.W. Kim, H.Y. Lee: Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode, Electrochem. Solid-State Lett. 4, A19 (2001)CrossRef H.Y. Lee, S.W. Kim, H.Y. Lee: Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode, Electrochem. Solid-State Lett. 4, A19 (2001)CrossRef
[135]
Zurück zum Zitat M.S. Hong, S.H. Lee, S.W. Kim: Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor, Electrochem. Solid-State Lett. 5, A227 (2002)CrossRef M.S. Hong, S.H. Lee, S.W. Kim: Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor, Electrochem. Solid-State Lett. 5, A227 (2002)CrossRef
[136]
Zurück zum Zitat H. Kim, B.N. Popov: Synthesis and characterization of MnO2-based mixed oxides as supercapacitors, J. Electrochem. Soc. 150, D56 (2003)CrossRef H. Kim, B.N. Popov: Synthesis and characterization of MnO2-based mixed oxides as supercapacitors, J. Electrochem. Soc. 150, D56 (2003)CrossRef
[137]
Zurück zum Zitat E. Raymundo-Piñero, V. Khomenko, E. Frackowiak, F. Béguin: Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors, J. Electrochem. Soc. 152, A229 (2005)CrossRef E. Raymundo-Piñero, V. Khomenko, E. Frackowiak, F. Béguin: Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors, J. Electrochem. Soc. 152, A229 (2005)CrossRef
[138]
Zurück zum Zitat V. Khomenko, E. Raymundo-Piñero, F. Béguin: Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium, J. Power Sources 153, 183 (2006)CrossRef V. Khomenko, E. Raymundo-Piñero, F. Béguin: Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium, J. Power Sources 153, 183 (2006)CrossRef
[139]
Zurück zum Zitat V. Khomenko, E. Raymundo-Piñero, E. Frackowiak, F. Béguin: High-voltage asymmetric supercapacitors operating in aqueous electrolyte, Appl. Phys. A 82, 567 (2006)CrossRef V. Khomenko, E. Raymundo-Piñero, E. Frackowiak, F. Béguin: High-voltage asymmetric supercapacitors operating in aqueous electrolyte, Appl. Phys. A 82, 567 (2006)CrossRef
[140]
Zurück zum Zitat R.K. Sharma, H.S. Oh, Y.G. Shul, H. Kim: Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor, J. Power Sources 173, 1024 (2007)CrossRef R.K. Sharma, H.S. Oh, Y.G. Shul, H. Kim: Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor, J. Power Sources 173, 1024 (2007)CrossRef
[141]
Zurück zum Zitat J.Y. Luo, J.L. Liu, P. He, Y.Y. Xia: A novel LiTi2(PO4)3/MnO2 hybrid supercapacitor in lithium sulfate aqueous electrolyte, Electrochim. Acta 53, 8128 (2008)CrossRef J.Y. Luo, J.L. Liu, P. He, Y.Y. Xia: A novel LiTi2(PO4)3/MnO2 hybrid supercapacitor in lithium sulfate aqueous electrolyte, Electrochim. Acta 53, 8128 (2008)CrossRef
[142]
Zurück zum Zitat S.L. Kuo, N.L. Wu: Investigation of pseudocapacitive charge-storage reaction of MnO2 · nH2O supercapacitors in aqueous electrolytes, J. Electrochem. Soc. 153, A1317 (2006)CrossRef S.L. Kuo, N.L. Wu: Investigation of pseudocapacitive charge-storage reaction of MnO2 · nH2O supercapacitors in aqueous electrolytes, J. Electrochem. Soc. 153, A1317 (2006)CrossRef
[143]
Zurück zum Zitat Y.K. Zhou, B.L. He, F.B. Zhang, H.L. Li: Hydrous manganese oxide/carbon nanotube composite electrodes for electrochemical capacitors, J. Solid State Electrochem. 8, 482 (2004)CrossRef Y.K. Zhou, B.L. He, F.B. Zhang, H.L. Li: Hydrous manganese oxide/carbon nanotube composite electrodes for electrochemical capacitors, J. Solid State Electrochem. 8, 482 (2004)CrossRef
[144]
Zurück zum Zitat T. Brousse, P.L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger, P. Simon: Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor, J. Power Sources 173, 633 (2007)CrossRef T. Brousse, P.L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger, P. Simon: Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor, J. Power Sources 173, 633 (2007)CrossRef
[145]
Zurück zum Zitat Y.C. Hsieh, K.T. Lee, Y.P. Lin, N.L. Wu, S.W. Donne: Investigation on capacity fading of aqueous MnO2 · nH2O electrochemical capacitor, J. Power Sources 177, 660 (2008)CrossRef Y.C. Hsieh, K.T. Lee, Y.P. Lin, N.L. Wu, S.W. Donne: Investigation on capacity fading of aqueous MnO2 · nH2O electrochemical capacitor, J. Power Sources 177, 660 (2008)CrossRef
[146]
Zurück zum Zitat K.T. Lee, N.L. Wu: Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte, J. Power Sources 179, 430 (2008)CrossRef K.T. Lee, N.L. Wu: Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte, J. Power Sources 179, 430 (2008)CrossRef
[147]
Zurück zum Zitat T. Brousse, D. Bélanger: A Hybrid Fe3O4MnO2 capacitor in mild aqueous electrolyte, Electrochem. Solid-State Lett. 6, A244 (2003)CrossRef T. Brousse, D. Bélanger: A Hybrid Fe3O4MnO2 capacitor in mild aqueous electrolyte, Electrochem. Solid-State Lett. 6, A244 (2003)CrossRef
[148]
Zurück zum Zitat J.W. Long, A.L. Young, D.R. Rolison: Spectroelectrochemical characterization of nanostructured, mesoporous manganese oxide in aqueous electrolytes, J. Electrochem. Soc. 150, A1161 (2003)CrossRef J.W. Long, A.L. Young, D.R. Rolison: Spectroelectrochemical characterization of nanostructured, mesoporous manganese oxide in aqueous electrolytes, J. Electrochem. Soc. 150, A1161 (2003)CrossRef
[149]
Zurück zum Zitat T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, D. Bélanger: Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Appl. Phys. A 82, 599 (2006)CrossRef T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, D. Bélanger: Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Appl. Phys. A 82, 599 (2006)CrossRef
[150]
Zurück zum Zitat G.X. Wang, B.L. Zhang, Z.L. Yu, M.Z. Qu: Manganese oxide/MWNTs composite electrodes for supercapacitors, Solid State Ionics 176, 1169 (2005)CrossRef G.X. Wang, B.L. Zhang, Z.L. Yu, M.Z. Qu: Manganese oxide/MWNTs composite electrodes for supercapacitors, Solid State Ionics 176, 1169 (2005)CrossRef
[151]
Zurück zum Zitat V. Subramanian, H. Zhu, B. Wei: Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials, Electrochem. Commun. 8, 827 (2006)CrossRef V. Subramanian, H. Zhu, B. Wei: Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials, Electrochem. Commun. 8, 827 (2006)CrossRef
[152]
Zurück zum Zitat V. Subramanian, H. Zhu, B. Wei: Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte, Chem. Phys. Lett. 453, 242 (2008)CrossRef V. Subramanian, H. Zhu, B. Wei: Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte, Chem. Phys. Lett. 453, 242 (2008)CrossRef
[153]
Zurück zum Zitat X.H. Yang, Y.G. Wang, H.M. Xiong, Y.Y. Xia: Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor, Electrochim. Acta 53, 752 (2007)CrossRef X.H. Yang, Y.G. Wang, H.M. Xiong, Y.Y. Xia: Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor, Electrochim. Acta 53, 752 (2007)CrossRef
[154]
Zurück zum Zitat P. Ruetschi: Cation-vacancy model for MnO2, J. Electrochem. Soc. 131, 2737 (1984)CrossRef P. Ruetschi: Cation-vacancy model for MnO2, J. Electrochem. Soc. 131, 2737 (1984)CrossRef
[155]
Zurück zum Zitat P. Ruetschi, R. Giovanoli: Cation vacancies in MnO2 and their influence on electrochemical reactivity, J. Electrochem. Soc. 135, 2663 (1988)CrossRef P. Ruetschi, R. Giovanoli: Cation vacancies in MnO2 and their influence on electrochemical reactivity, J. Electrochem. Soc. 135, 2663 (1988)CrossRef
[156]
Zurück zum Zitat P. Ruetschi: Influence of cation vacancies on the electrode potential of MnO2, J. Electrochem. Soc. 135, 2657 (1988)CrossRef P. Ruetschi: Influence of cation vacancies on the electrode potential of MnO2, J. Electrochem. Soc. 135, 2657 (1988)CrossRef
[157]
Zurück zum Zitat K.W. Nam, M.G. Kim, K.B. Kim: In situ Mn K-edge X-ray absorption spectroscopy studies of electrodeposited manganese oxide films for electrochemical capacitors, J. Phys. Chem. C 111, 749 (2007)CrossRef K.W. Nam, M.G. Kim, K.B. Kim: In situ Mn K-edge X-ray absorption spectroscopy studies of electrodeposited manganese oxide films for electrochemical capacitors, J. Phys. Chem. C 111, 749 (2007)CrossRef
[158]
Zurück zum Zitat J.K. Chang, M.T. Lee, W.T. Tsai: In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications, J. Power Sources 166, 590 (2007)CrossRef J.K. Chang, M.T. Lee, W.T. Tsai: In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications, J. Power Sources 166, 590 (2007)CrossRef
[159]
Zurück zum Zitat M. Nakayama, A. Tanaka, Y. Sato, T. Tonosaki, K. Ogura: Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties, Langmuir 21, 5907 (2005)CrossRef M. Nakayama, A. Tanaka, Y. Sato, T. Tonosaki, K. Ogura: Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties, Langmuir 21, 5907 (2005)CrossRef
[160]
Zurück zum Zitat M. Chigane, M. Ishikawa: Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism, J. Electrochem. Soc. 147, 2246 (2000)CrossRef M. Chigane, M. Ishikawa: Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism, J. Electrochem. Soc. 147, 2246 (2000)CrossRef
[161]
Zurück zum Zitat S.-E. Chun, S.-I. Pyun, G.-J. Lee: A study on mechanism of charging/discharging at amorphous manganese oxide electrode in 0.1 M Na2SO4 solution, Electrochim. Acta 51, 6479 (2006)CrossRef S.-E. Chun, S.-I. Pyun, G.-J. Lee: A study on mechanism of charging/discharging at amorphous manganese oxide electrode in 0.1 M Na2SO4 solution, Electrochim. Acta 51, 6479 (2006)CrossRef
[162]
Zurück zum Zitat S. Ardizzone, G. Fregonara, S. Trasatti: ‘‘Inner’’ and ‘‘outer’’ active surface of RuO2 electrodes, Electrochim. Acta 35, 263 (1990)CrossRef S. Ardizzone, G. Fregonara, S. Trasatti: ‘‘Inner’’ and ‘‘outer’’ active surface of RuO2 electrodes, Electrochim. Acta 35, 263 (1990)CrossRef
[163]
Zurück zum Zitat S.C. Pang, M.A. Anderson, T.W. Chapman: Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide, J. Electrochem. Soc. 147, 444 (2000)CrossRef S.C. Pang, M.A. Anderson, T.W. Chapman: Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide, J. Electrochem. Soc. 147, 444 (2000)CrossRef
[164]
Zurück zum Zitat S.F. Chin, S.C. Pang, M.A. Anderson: Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors, J. Electrochem. Soc. 149, A379 (2002)CrossRef S.F. Chin, S.C. Pang, M.A. Anderson: Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors, J. Electrochem. Soc. 149, A379 (2002)CrossRef
[165]
Zurück zum Zitat N.J. Dudney: Solid-state thin-film rechargeable batteries, Mater. Sci. Eng. B 116, 245 (2005)CrossRef N.J. Dudney: Solid-state thin-film rechargeable batteries, Mater. Sci. Eng. B 116, 245 (2005)CrossRef
[166]
Zurück zum Zitat J.K. Chang, Y.L. Chen, W.T. Tsai: Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition, J. Power Sources 135, 344 (2004)CrossRef J.K. Chang, Y.L. Chen, W.T. Tsai: Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition, J. Power Sources 135, 344 (2004)CrossRef
[167]
Zurück zum Zitat C.C. Hu, T.W. Tsou: Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition, Electrochim. Acta 47, 3523 (2002)CrossRef C.C. Hu, T.W. Tsou: Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition, Electrochim. Acta 47, 3523 (2002)CrossRef
[168]
Zurück zum Zitat M.S. Wu, P.C.J. Chiang: Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors, Electrochem. Solid-State Lett. 7, A123 (2004)CrossRef M.S. Wu, P.C.J. Chiang: Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors, Electrochem. Solid-State Lett. 7, A123 (2004)CrossRef
[169]
Zurück zum Zitat C.C. Hu, C.C. Wang: Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition, J. Electrochem. Soc. 150, A1079 (2003)CrossRef C.C. Hu, C.C. Wang: Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition, J. Electrochem. Soc. 150, A1079 (2003)CrossRef
[170]
Zurück zum Zitat J.N. Broughton, M.J. Brett: Variations in MnO2 electrodeposition for electrochemical capacitors, Electrochim. Acta 50, 4814 (2005)CrossRef J.N. Broughton, M.J. Brett: Variations in MnO2 electrodeposition for electrochemical capacitors, Electrochim. Acta 50, 4814 (2005)CrossRef
[171]
Zurück zum Zitat Y.K. Zhou, M. Toupin, D. Bélanger, T. Brousse, F. Favier: Electrochemical preparation and characterization of Birnessite-type layered manganese oxide films, J. Phys. Chem. Solids 67, 1351 (2006)CrossRef Y.K. Zhou, M. Toupin, D. Bélanger, T. Brousse, F. Favier: Electrochemical preparation and characterization of Birnessite-type layered manganese oxide films, J. Phys. Chem. Solids 67, 1351 (2006)CrossRef
[172]
Zurück zum Zitat J. Chang, S. Lee, T. Ganesh, R.S. Mane, S. Min, W. Lee, S.H. Han: Viologen-assisted manganese oxide electrode for improved electrochemical supercapacitors, J. Electroanal. Chem. 624, 167 (2008)CrossRef J. Chang, S. Lee, T. Ganesh, R.S. Mane, S. Min, W. Lee, S.H. Han: Viologen-assisted manganese oxide electrode for improved electrochemical supercapacitors, J. Electroanal. Chem. 624, 167 (2008)CrossRef
[173]
Zurück zum Zitat C.C. Hu, T.W. Tsou: Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition, Electrochem. Comm. 4, 105 (2002)CrossRef C.C. Hu, T.W. Tsou: Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition, Electrochem. Comm. 4, 105 (2002)CrossRef
[174]
Zurück zum Zitat J.K. Chang, W.T. Tsai: Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors, J. Electrochem. Soc. 150, A1333 (2003)CrossRef J.K. Chang, W.T. Tsai: Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors, J. Electrochem. Soc. 150, A1333 (2003)CrossRef
[175]
Zurück zum Zitat J.K. Chang, W.T. Tsai: Effects of temperature and concentration on the structure and specific capacitance of manganese oxide deposited in manganese acetate solution, J. Appl. Electrochem. 34, 953 (2004)CrossRef J.K. Chang, W.T. Tsai: Effects of temperature and concentration on the structure and specific capacitance of manganese oxide deposited in manganese acetate solution, J. Appl. Electrochem. 34, 953 (2004)CrossRef
[176]
Zurück zum Zitat C.H. Liang, C.L. Nien, H.C. Hu, C.S. Hwang: Charging/discharging behavior of manganese oxide electrodes in aqueous electrolyte prepared by galvanostatic electrodeposition, J. Ceram. Soc. Japan 115, 319 (2007)CrossRef C.H. Liang, C.L. Nien, H.C. Hu, C.S. Hwang: Charging/discharging behavior of manganese oxide electrodes in aqueous electrolyte prepared by galvanostatic electrodeposition, J. Ceram. Soc. Japan 115, 319 (2007)CrossRef
[177]
Zurück zum Zitat S. Chou, F. Cheng, J. Chen: Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films, J. Power Sources 162, 727 (2006)CrossRef S. Chou, F. Cheng, J. Chen: Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films, J. Power Sources 162, 727 (2006)CrossRef
[178]
Zurück zum Zitat M. Nakayama, S. Konishi, H. Tagashira, K. Ogura: Electrochemical synthesis of layered manganese oxides intercalated with tetraalkylammonium ions, Langmuir 21, 354 (2005)CrossRef M. Nakayama, S. Konishi, H. Tagashira, K. Ogura: Electrochemical synthesis of layered manganese oxides intercalated with tetraalkylammonium ions, Langmuir 21, 354 (2005)CrossRef
[179]
Zurück zum Zitat M. Nakayama, H. Tagashira: Electrodeposition of layered manganese oxide nanocomposites intercalated with strong and weak polyelectrolytes, Langmuir 22, 3864 (2006)CrossRef M. Nakayama, H. Tagashira: Electrodeposition of layered manganese oxide nanocomposites intercalated with strong and weak polyelectrolytes, Langmuir 22, 3864 (2006)CrossRef
[180]
Zurück zum Zitat W. Wei, X. Cui, W. Chen, D.G. Ivey: Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors, J. Power Sources 186, 543 (2009)CrossRef W. Wei, X. Cui, W. Chen, D.G. Ivey: Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors, J. Power Sources 186, 543 (2009)CrossRef
[181]
Zurück zum Zitat K.R. Prasad, N. Miura: Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors, Electrochem. Commun. 6, 1004 (2004)CrossRef K.R. Prasad, N. Miura: Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors, Electrochem. Commun. 6, 1004 (2004)CrossRef
[182]
Zurück zum Zitat K.R. Prasad, N. Miura: Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors, J. Power Sources 135, 354 (2004)CrossRef K.R. Prasad, N. Miura: Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors, J. Power Sources 135, 354 (2004)CrossRef
[183]
Zurück zum Zitat S. Devaraj, N. Munichandraiah: High capacitance of electrodeposited MnO2 by the effect of a surface-active agent, Electrochem. Solid-State Lett. 8, A373 (2005)CrossRef S. Devaraj, N. Munichandraiah: High capacitance of electrodeposited MnO2 by the effect of a surface-active agent, Electrochem. Solid-State Lett. 8, A373 (2005)CrossRef
[184]
Zurück zum Zitat T. Shinomiya, V. Gupta, N. Miura: Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide, Electrochim. Acta 51, 4412 (2006)CrossRef T. Shinomiya, V. Gupta, N. Miura: Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide, Electrochim. Acta 51, 4412 (2006)CrossRef
[185]
Zurück zum Zitat N. Nagarajan, H. Humadi, I. Zhitomirsky: Cathodic electrodeposition of MnO x films for electrochemical supercapacitors, Electrochim. Acta 51, 3039 (2006)CrossRef N. Nagarajan, H. Humadi, I. Zhitomirsky: Cathodic electrodeposition of MnO x films for electrochemical supercapacitors, Electrochim. Acta 51, 3039 (2006)CrossRef
[186]
Zurück zum Zitat N. Nagarajan, M. Cheong, I. Zhitomirsky: Electrochemical capacitance of MnO x films, Mater. Chem. Phys. 103, 47 (2007)CrossRef N. Nagarajan, M. Cheong, I. Zhitomirsky: Electrochemical capacitance of MnO x films, Mater. Chem. Phys. 103, 47 (2007)CrossRef
[187]
Zurück zum Zitat M.S. Wu, R.H. Lee: Nanostructured manganese oxide electrodes for lithium-ion storage in aqueous lithium sulfate electrolyte, J. Power Sources 176, 363 (2008)CrossRef M.S. Wu, R.H. Lee: Nanostructured manganese oxide electrodes for lithium-ion storage in aqueous lithium sulfate electrolyte, J. Power Sources 176, 363 (2008)CrossRef
[188]
Zurück zum Zitat J. Wei, N. Nagarajan, I. Zhitomirsky: Manganese oxide films for electrochemical supercapacitors, J. Mater. Process. Technol. 186, 356 (2007)CrossRef J. Wei, N. Nagarajan, I. Zhitomirsky: Manganese oxide films for electrochemical supercapacitors, J. Mater. Process. Technol. 186, 356 (2007)CrossRef
[189]
Zurück zum Zitat S.C. Wang, C.Y. Chen, T.C. Chien, P.Y. Lee, C.K. Lin: Supercapacitive properties of spray pyrolyzed iron-added manganese oxide powders deposited by electrophoretic deposition technique, Thin Solid Films 517, 1234 (2008)CrossRef S.C. Wang, C.Y. Chen, T.C. Chien, P.Y. Lee, C.K. Lin: Supercapacitive properties of spray pyrolyzed iron-added manganese oxide powders deposited by electrophoretic deposition technique, Thin Solid Films 517, 1234 (2008)CrossRef
[190]
Zurück zum Zitat J. Li, I. Zhitomirsky: Electrophoretic deposition of manganese oxide nanofibers, Mater. Chem. Phys. 112, 525 (2008)CrossRef J. Li, I. Zhitomirsky: Electrophoretic deposition of manganese oxide nanofibers, Mater. Chem. Phys. 112, 525 (2008)CrossRef
[191]
Zurück zum Zitat J.N. Broughton, M.J. Brett: Investigation of thin sputtered Mn films for electrochemical capacitors, Electrochim. Acta 49, 4439 (2004)CrossRef J.N. Broughton, M.J. Brett: Investigation of thin sputtered Mn films for electrochemical capacitors, Electrochim. Acta 49, 4439 (2004)CrossRef
[192]
Zurück zum Zitat B. Djurfors, J.N. Broughton, M.J. Brett, D.J. Ivey: Electrochemical oxidation of Mn/MnO films: Formation of an electrochemical capacitor, Acta Mater. 53, 957 (2005)CrossRef B. Djurfors, J.N. Broughton, M.J. Brett, D.J. Ivey: Electrochemical oxidation of Mn/MnO films: Formation of an electrochemical capacitor, Acta Mater. 53, 957 (2005)CrossRef
[193]
Zurück zum Zitat B. Djurfors, J.N. Broughton, M.J. Brett, D.J. Ivey: Production of capacitive films from Mn thin films: Effects of current density and film thickness, J. Power Sources 156, 741 (2006)CrossRef B. Djurfors, J.N. Broughton, M.J. Brett, D.J. Ivey: Production of capacitive films from Mn thin films: Effects of current density and film thickness, J. Power Sources 156, 741 (2006)CrossRef
[194]
Zurück zum Zitat B. Djurfors, J.N. Broughton, M.J. Brett, D.J. Ivey: Electrochemical oxidation of Mn/MnO films: Mechanism of porous film growth, J. Electrochem. Soc. 153, A64 (2006)CrossRef B. Djurfors, J.N. Broughton, M.J. Brett, D.J. Ivey: Electrochemical oxidation of Mn/MnO films: Mechanism of porous film growth, J. Electrochem. Soc. 153, A64 (2006)CrossRef
[195]
Zurück zum Zitat J.N. Broughton, M.J. Brett: Electrochemical capacitance in manganese thin films with chevron microstructure, Electrochem. Solid-State Lett. 5, A279 (2002)CrossRef J.N. Broughton, M.J. Brett: Electrochemical capacitance in manganese thin films with chevron microstructure, Electrochem. Solid-State Lett. 5, A279 (2002)CrossRef
[196]
Zurück zum Zitat J.K. Chang, C.H. Huang, W.T. Tsai, M.J. Deng, I.W. Sun, P.Y. Chen: Manganese films electrodeposited at different potentials and temperatures in ionic liquid and their application as electrode materials for supercapacitors, Electrochim. Acta 53, 4447 (2008)CrossRef J.K. Chang, C.H. Huang, W.T. Tsai, M.J. Deng, I.W. Sun, P.Y. Chen: Manganese films electrodeposited at different potentials and temperatures in ionic liquid and their application as electrode materials for supercapacitors, Electrochim. Acta 53, 4447 (2008)CrossRef
[197]
Zurück zum Zitat J.K. Chang, C.H. Huang, W.T. Tsai, M.J. Deng, I.W. Sun: Ideal pseudocapacitive performance of the Mn oxide anodized from the nanostructured and amorphous Mn thin film electrodeposited in BMP-NTf2 ionic liquid, J. Power Sources 179, 435 (2008)CrossRef J.K. Chang, C.H. Huang, W.T. Tsai, M.J. Deng, I.W. Sun: Ideal pseudocapacitive performance of the Mn oxide anodized from the nanostructured and amorphous Mn thin film electrodeposited in BMP-NTf2 ionic liquid, J. Power Sources 179, 435 (2008)CrossRef
[198]
Zurück zum Zitat J.K. Chang, C.H. Huang, M.T. Lee, W.T. Tsai, M.J. Deng, I.W. Sun: Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes, Electrochim. Acta 54, 3278 (2009)CrossRef J.K. Chang, C.H. Huang, M.T. Lee, W.T. Tsai, M.J. Deng, I.W. Sun: Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes, Electrochim. Acta 54, 3278 (2009)CrossRef
[199]
Zurück zum Zitat Y.S. Chen, C.C. Hu, Y.T. Wu: Capacitive and textural characteristics of manganese oxide prepared by anodic deposition: Effects of manganese precursors and oxide thickness, J. Solid State Electrochem. 8, 467 (2004)CrossRef Y.S. Chen, C.C. Hu, Y.T. Wu: Capacitive and textural characteristics of manganese oxide prepared by anodic deposition: Effects of manganese precursors and oxide thickness, J. Solid State Electrochem. 8, 467 (2004)CrossRef
[200]
Zurück zum Zitat M. Nakayama, T. Kanaya, R. Inoue: Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor, Electrochem. Commun. 9, 1154 (2007)CrossRef M. Nakayama, T. Kanaya, R. Inoue: Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor, Electrochem. Commun. 9, 1154 (2007)CrossRef
[201]
Zurück zum Zitat J.K. Tchang, S.H. Hsu, W.T. Tsai, I.W. Sun: A novel electrochemical process to prepare a high-porosity manganese oxide electrode with promising pseudocapacitive performance, J. Power Sources 177, 676 (2008)CrossRef J.K. Tchang, S.H. Hsu, W.T. Tsai, I.W. Sun: A novel electrochemical process to prepare a high-porosity manganese oxide electrode with promising pseudocapacitive performance, J. Power Sources 177, 676 (2008)CrossRef
[202]
Zurück zum Zitat T. Xue, C.L. Xu, D.D. Zhao, X.H. Li, H.L. Li: Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates, J. Power Sources 164, 953 (2007)CrossRef T. Xue, C.L. Xu, D.D. Zhao, X.H. Li, H.L. Li: Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates, J. Power Sources 164, 953 (2007)CrossRef
[203]
Zurück zum Zitat B. Dong, T. Xue, C.L. Xu, H.L. Li: Electrodeposition of mesoporous manganese dioxide films from lyotropic liquid crystalline phases, Microporous Mesoporous Mater. 112, 627 (2008)CrossRef B. Dong, T. Xue, C.L. Xu, H.L. Li: Electrodeposition of mesoporous manganese dioxide films from lyotropic liquid crystalline phases, Microporous Mesoporous Mater. 112, 627 (2008)CrossRef
[204]
Zurück zum Zitat S.J. Pan, Y.J. Shih, J.R. Chen, J.K. Chang, W.T. Tsai: Selective micro-etching of duplex stainless steel for preparing manganese oxide supercapacitor electrode, J. Power Sources 187, 261 (2009)CrossRef S.J. Pan, Y.J. Shih, J.R. Chen, J.K. Chang, W.T. Tsai: Selective micro-etching of duplex stainless steel for preparing manganese oxide supercapacitor electrode, J. Power Sources 187, 261 (2009)CrossRef
[205]
Zurück zum Zitat X. Zhang, W. Yang, D.G. Evans: Layer-by-layer self-assembly of manganese oxide nanosheets/polyethylenimine multilayer films as electrodes for supercapacitors, J. Power Sources 184, 695 (2008)CrossRef X. Zhang, W. Yang, D.G. Evans: Layer-by-layer self-assembly of manganese oxide nanosheets/polyethylenimine multilayer films as electrodes for supercapacitors, J. Power Sources 184, 695 (2008)CrossRef
[206]
Zurück zum Zitat P.Y. Chuang, C.C. Hu: The electrochemical characteristics of binary manganese–cobalt oxides prepared by anodic deposition, Mater. Chem. Phys. 92, 138 (2005)CrossRef P.Y. Chuang, C.C. Hu: The electrochemical characteristics of binary manganese–cobalt oxides prepared by anodic deposition, Mater. Chem. Phys. 92, 138 (2005)CrossRef
[207]
Zurück zum Zitat J.K. Chang, M.T. Lee, C.H. Huang, W.T. Tsai: Physicochemical properties and electrochemical behavior of binary manganese–cobalt oxide electrodes for supercapacitor applications, Mater. Chem. Phys. 108, 124 (2008)CrossRef J.K. Chang, M.T. Lee, C.H. Huang, W.T. Tsai: Physicochemical properties and electrochemical behavior of binary manganese–cobalt oxide electrodes for supercapacitor applications, Mater. Chem. Phys. 108, 124 (2008)CrossRef
[208]
Zurück zum Zitat F. Moser, L. Athouël, O. Crosnier, F. Favier, D. Bélanger, T. Brousse: Transparent electrochemical capacitor based on electrodeposited MnO2 thin film electrodes and gel-type electrolyte, Electrochem. Commun. 11, 1259 (2009)CrossRef F. Moser, L. Athouël, O. Crosnier, F. Favier, D. Bélanger, T. Brousse: Transparent electrochemical capacitor based on electrodeposited MnO2 thin film electrodes and gel-type electrolyte, Electrochem. Commun. 11, 1259 (2009)CrossRef
[209]
Zurück zum Zitat E. Takeuchi: Size does matter: Autonomous micro-power sources, Electrochem. Soc. Interf. 17, 43 (2008) E. Takeuchi: Size does matter: Autonomous micro-power sources, Electrochem. Soc. Interf. 17, 43 (2008)
[210]
Zurück zum Zitat M. Deng, B. Yang, Z. Zhang, Y. Hu: Studies on CNTs–MnO2 nanocomposite for supercapacitors, J. Mater. Sci. 40, 1017 (2005)CrossRef M. Deng, B. Yang, Z. Zhang, Y. Hu: Studies on CNTs–MnO2 nanocomposite for supercapacitors, J. Mater. Sci. 40, 1017 (2005)CrossRef
[211]
Zurück zum Zitat D. Jones, E. Wortham, J. Rozière, F. Favier, J.L. Pascal, L. Monconduit: Manganese oxide nanocomposites: Preparation and some electrochemical properties, J. Phys. Chem. Sol. 65, 235 (2004)CrossRef D. Jones, E. Wortham, J. Rozière, F. Favier, J.L. Pascal, L. Monconduit: Manganese oxide nanocomposites: Preparation and some electrochemical properties, J. Phys. Chem. Sol. 65, 235 (2004)CrossRef
[212]
Zurück zum Zitat V. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan, B. Wei: Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures, J. Phys. Chem. B 109, 20207 (2005)CrossRef V. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan, B. Wei: Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures, J. Phys. Chem. B 109, 20207 (2005)CrossRef
[213]
Zurück zum Zitat Q. Zhou, X. Li, Y.G. Li, B.Z. Tian, D.Y. Zhao, Z.Y. Jiang: Synthesis and electrochemical properties of semicrystalline gyroidal mesoporous MnO2, Chin. J. Chem. 24, 835 (2006)CrossRef Q. Zhou, X. Li, Y.G. Li, B.Z. Tian, D.Y. Zhao, Z.Y. Jiang: Synthesis and electrochemical properties of semicrystalline gyroidal mesoporous MnO2, Chin. J. Chem. 24, 835 (2006)CrossRef
[214]
Zurück zum Zitat M. Xu, L. Kong, W. Zhou, H. Li: Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins, J. Phys. Chem. C 111, 19141 (2007)CrossRef M. Xu, L. Kong, W. Zhou, H. Li: Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins, J. Phys. Chem. C 111, 19141 (2007)CrossRef
[215]
Zurück zum Zitat M. Ghaemi, F. Ataherian, A. Zolfaghari, S.M. Jafari: Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: Effects of physisorbed water and proton conduction, Electrochim. Acta 53, 4607 (2008)CrossRef M. Ghaemi, F. Ataherian, A. Zolfaghari, S.M. Jafari: Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: Effects of physisorbed water and proton conduction, Electrochim. Acta 53, 4607 (2008)CrossRef
[216]
Zurück zum Zitat S. Komaba, A. Ogata, T. Tsuchikawa: Enhanced supercapacitive behaviors of Birnessite, Electrochem. Commun. 10, 1435 (2008)CrossRef S. Komaba, A. Ogata, T. Tsuchikawa: Enhanced supercapacitive behaviors of Birnessite, Electrochem. Commun. 10, 1435 (2008)CrossRef
[217]
Zurück zum Zitat S. Devaraj, N. Munichandraiah: Surfactant stabilized nanopetals morphology of α-MnO2 prepared by microemulsion method, J. Solid State Electrochem. 12, 207 (2008)CrossRef S. Devaraj, N. Munichandraiah: Surfactant stabilized nanopetals morphology of α-MnO2 prepared by microemulsion method, J. Solid State Electrochem. 12, 207 (2008)CrossRef
[218]
Zurück zum Zitat J. Zhao, H. Chen, J. Shi, J. Gu, X. Dong, J. Gao, M. Ruan, L. Yu: Electrochemical and oxygen desorption properties of nanostructured ternary compound Na x MnO2 directly templated from mesoporous SBA-15, Microporous Mesoporous Mater. 116, 432 (2008)CrossRef J. Zhao, H. Chen, J. Shi, J. Gu, X. Dong, J. Gao, M. Ruan, L. Yu: Electrochemical and oxygen desorption properties of nanostructured ternary compound Na x MnO2 directly templated from mesoporous SBA-15, Microporous Mesoporous Mater. 116, 432 (2008)CrossRef
[219]
Zurück zum Zitat E. Beaudrouet, A. Le Gal La Salle, D. Guyomard: Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials, Electrochim. Acta 54, 1240 (2009)CrossRef E. Beaudrouet, A. Le Gal La Salle, D. Guyomard: Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials, Electrochim. Acta 54, 1240 (2009)CrossRef
[220]
Zurück zum Zitat X. Wang, X. Wang, W. Huang, P.J. Sebastian, S. Gamboa: Sol–gel template synthesis of highly ordered MnO2 nanowire arrays, J. Power Sources 140, 211 (2005)CrossRef X. Wang, X. Wang, W. Huang, P.J. Sebastian, S. Gamboa: Sol–gel template synthesis of highly ordered MnO2 nanowire arrays, J. Power Sources 140, 211 (2005)CrossRef
[221]
Zurück zum Zitat G. González, J.I. Gutiérrez, J.R. González-Velasco, A. Cid, A. Arnanz, J. Arnanz: Transformations of manganese oxides under different thermal conditions, J. Thermal Anal. Calorim. 47, 93 (1995)CrossRef G. González, J.I. Gutiérrez, J.R. González-Velasco, A. Cid, A. Arnanz, J. Arnanz: Transformations of manganese oxides under different thermal conditions, J. Thermal Anal. Calorim. 47, 93 (1995)CrossRef
[222]
Zurück zum Zitat S. Li, S. Wang, B. Xu: Dry modification of electrode materials by roller vibration milling at room temperature, Particuology 6, 383 (2008)CrossRef S. Li, S. Wang, B. Xu: Dry modification of electrode materials by roller vibration milling at room temperature, Particuology 6, 383 (2008)CrossRef
[223]
Zurück zum Zitat C. Ye, Z.M. Lin, S.Z. Hui: Electrochemical and capacitance properties of rod-shaped MnO2 for supercapacitor, J. Electrochem. Soc. 152, A1272 (2005)CrossRef C. Ye, Z.M. Lin, S.Z. Hui: Electrochemical and capacitance properties of rod-shaped MnO2 for supercapacitor, J. Electrochem. Soc. 152, A1272 (2005)CrossRef
[224]
Zurück zum Zitat S.R. Sivakkumar, J.M. Ko, D.Y. Kim, B.C. Kim, G.G. Wallace: Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors, Electrochim. Acta 52, 7377 (2007)CrossRef S.R. Sivakkumar, J.M. Ko, D.Y. Kim, B.C. Kim, G.G. Wallace: Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors, Electrochim. Acta 52, 7377 (2007)CrossRef
[225]
Zurück zum Zitat L. Athouël, F. Moser, R. Duga, O. Crosnier, D. Bélanger, T. Brousse: Birnessite as possible candidate for hybrid carbon/MnO2 electrochemical capacitor, ECS Trans. 16, 119 (2008)CrossRef L. Athouël, F. Moser, R. Duga, O. Crosnier, D. Bélanger, T. Brousse: Birnessite as possible candidate for hybrid carbon/MnO2 electrochemical capacitor, ECS Trans. 16, 119 (2008)CrossRef
[226]
Zurück zum Zitat J. Jiang, A. Kucernak: Electrochemical supercapacitor material based on manganese oxide: Preparation and characterization, Electrochim. Acta 47, 2381 (2002)CrossRef J. Jiang, A. Kucernak: Electrochemical supercapacitor material based on manganese oxide: Preparation and characterization, Electrochim. Acta 47, 2381 (2002)CrossRef
[227]
Zurück zum Zitat C.Y. Lee, H.M. Tsai, H.J. Chuang, S.Y. Li, P. Lin, T.Y. Tseng: Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes, J. Electrochem. Soc. 152, A716 (2005)CrossRef C.Y. Lee, H.M. Tsai, H.J. Chuang, S.Y. Li, P. Lin, T.Y. Tseng: Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes, J. Electrochem. Soc. 152, A716 (2005)CrossRef
[228]
Zurück zum Zitat Z. Fan, Z. Qie, T. Wei, J. Yan, S. Wang: Preparation and characteristics of nanostructured MnO2/MWCNTs using microwave irradiation method, Mater. Lett. 62, 3345 (2008)CrossRef Z. Fan, Z. Qie, T. Wei, J. Yan, S. Wang: Preparation and characteristics of nanostructured MnO2/MWCNTs using microwave irradiation method, Mater. Lett. 62, 3345 (2008)CrossRef
[229]
Zurück zum Zitat C. Xu, B. Li, H. Du, F. Kang, Y. Zeng: Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method, J. Power Sources 180, 664 (2008)CrossRef C. Xu, B. Li, H. Du, F. Kang, Y. Zeng: Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method, J. Power Sources 180, 664 (2008)CrossRef
[230]
Zurück zum Zitat A.B. Yuan, M. Zhou, X.L. Wang, Z.H. Sun, Y.Q. Wang: Synthesis and characterization of nanostructured manganese dioxide used as positive electrode material for electrochemical capacitor with lithium hydroxide electrolyte, Chin. J. Chem. 26, 65 (2008)CrossRef A.B. Yuan, M. Zhou, X.L. Wang, Z.H. Sun, Y.Q. Wang: Synthesis and characterization of nanostructured manganese dioxide used as positive electrode material for electrochemical capacitor with lithium hydroxide electrolyte, Chin. J. Chem. 26, 65 (2008)CrossRef
[231]
Zurück zum Zitat C.Y. Lee, H.M. Tsai, H.J. Chuang, S.Y. Li, P. Lin, Y.T. Tseng: Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes, J. Electrochem. Soc. 152, A716 (2005)CrossRef C.Y. Lee, H.M. Tsai, H.J. Chuang, S.Y. Li, P. Lin, Y.T. Tseng: Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes, J. Electrochem. Soc. 152, A716 (2005)CrossRef
[232]
Zurück zum Zitat Z. Fan, J. Chen, M. Wang, K. Cui, H. Zhou, Y. Kuang: Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials, Diam. Rel. Mater. 15, 1478 (2006)CrossRef Z. Fan, J. Chen, M. Wang, K. Cui, H. Zhou, Y. Kuang: Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials, Diam. Rel. Mater. 15, 1478 (2006)CrossRef
[233]
Zurück zum Zitat X. Xie, L. Gao: Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method, Carbon 45, 2365 (2007)CrossRef X. Xie, L. Gao: Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method, Carbon 45, 2365 (2007)CrossRef
[234]
Zurück zum Zitat S.-B. Ma, K.-Y. Ahn, E.-S. Lee, K.-H. Oh, K.B. Kim: Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes, Carbon 45, 375 (2007)CrossRef S.-B. Ma, K.-Y. Ahn, E.-S. Lee, K.-H. Oh, K.B. Kim: Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes, Carbon 45, 375 (2007)CrossRef
[235]
Zurück zum Zitat S.-L. Chou, J.-Z. Wang, S.-Y. Chew, H.K. Liu, S.-X. Dou: Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors, Electrochem. Commun. 10, 1724 (2008)CrossRef S.-L. Chou, J.-Z. Wang, S.-Y. Chew, H.K. Liu, S.-X. Dou: Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors, Electrochem. Commun. 10, 1724 (2008)CrossRef
[236]
Zurück zum Zitat Z. Fan, J. Chen, B. Zhang, F. Sun, B. Liu, Y. Kuang: Electrochemically induced deposition method to prepare γ-MnO2/multi-walled carbon nanotube composites as electrode material in supercapacitors, Mater. Res. Bull. 43, 2085 (2008)CrossRef Z. Fan, J. Chen, B. Zhang, F. Sun, B. Liu, Y. Kuang: Electrochemically induced deposition method to prepare γ-MnO2/multi-walled carbon nanotube composites as electrode material in supercapacitors, Mater. Res. Bull. 43, 2085 (2008)CrossRef
[237]
Zurück zum Zitat S.-B. Ma, K.-W. Nam, W.-S. Yoon, X.-Q. Yang, K.-Y. Ahn, K.-H. Oh, K.-B. Kim: Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications, J. Power Sources 178, 483 (2008)CrossRef S.-B. Ma, K.-W. Nam, W.-S. Yoon, X.-Q. Yang, K.-Y. Ahn, K.-H. Oh, K.-B. Kim: Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications, J. Power Sources 178, 483 (2008)CrossRef
[238]
Zurück zum Zitat Z. Fan, Z. Qje, T. Wei, J. Yan, S. Wang: Preparation and characteristics of nanostructured MnO2/MWCNTs using microwave irradiation method, Mater. Lett. 62, 3345 (2008)CrossRef Z. Fan, Z. Qje, T. Wei, J. Yan, S. Wang: Preparation and characteristics of nanostructured MnO2/MWCNTs using microwave irradiation method, Mater. Lett. 62, 3345 (2008)CrossRef
[239]
Zurück zum Zitat Z. Fan, J. Chen, B. Zhang, B. Liu, X. Zhong, Y. Kuang: High dispersion of γ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors, Diam. Rel. Mater. 17, 1943 (2008)CrossRef Z. Fan, J. Chen, B. Zhang, B. Liu, X. Zhong, Y. Kuang: High dispersion of γ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors, Diam. Rel. Mater. 17, 1943 (2008)CrossRef
[240]
Zurück zum Zitat K.-W. Nam, C.-W. Lee, X.-Q. Yang, B.W. Cho, W.-S. Yoon, K.B. Kim: Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes, J. Power Sources 188, 323 (2009)CrossRef K.-W. Nam, C.-W. Lee, X.-Q. Yang, B.W. Cho, W.-S. Yoon, K.B. Kim: Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes, J. Power Sources 188, 323 (2009)CrossRef
[241]
Zurück zum Zitat J.M. Ko, K.M. Kim: Electrochemical properties of MnO2/activated carbon nanotube composite as an electrode material for supercapacitor, Mater. Chem. Phys. 114, 837 (2009)CrossRef J.M. Ko, K.M. Kim: Electrochemical properties of MnO2/activated carbon nanotube composite as an electrode material for supercapacitor, Mater. Chem. Phys. 114, 837 (2009)CrossRef
[242]
Zurück zum Zitat T. Bordjiba, D. Bélanger: Direct redox deposition of manganese oxide on multiscaled carbon nanotube/microfiber carbon electrode for electrochemical capacitor, J. Electrochem. Soc 156, A378 (2009)CrossRef T. Bordjiba, D. Bélanger: Direct redox deposition of manganese oxide on multiscaled carbon nanotube/microfiber carbon electrode for electrochemical capacitor, J. Electrochem. Soc 156, A378 (2009)CrossRef
[243]
Zurück zum Zitat X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, J. Shi: MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors, J. Phys. Chem. B 110, 6015 (2006)CrossRef X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, J. Shi: MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors, J. Phys. Chem. B 110, 6015 (2006)CrossRef
[244]
Zurück zum Zitat S. Zhu, H. Zhou, M. Hibino, I. Honma, M. Ichihara: Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method, Adv. Funct. Mater. 15, 381 (2005)CrossRef S. Zhu, H. Zhou, M. Hibino, I. Honma, M. Ichihara: Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method, Adv. Funct. Mater. 15, 381 (2005)CrossRef
[245]
Zurück zum Zitat H. Kawaoka, M. Hibino, H. Zhou, I. Honma: Enhancement of specific capacity of manganese oxide/carbon composite synthesized by sonochemical method, Electrochem. Solid-State Lett. 8, A253 (2005)CrossRef H. Kawaoka, M. Hibino, H. Zhou, I. Honma: Enhancement of specific capacity of manganese oxide/carbon composite synthesized by sonochemical method, Electrochem. Solid-State Lett. 8, A253 (2005)CrossRef
[246]
Zurück zum Zitat S.-B. Ma, Y.-H. Lee, K.-Y. Ahn, Ch.-M. Kim, K.-H. Oh, K.-B. Kim: Spontaneously deposited manganese oxide on acetylene black in an aqueous potassium permanganate solution, J. Electrochem. Soc. 153, C27 (2006)CrossRef S.-B. Ma, Y.-H. Lee, K.-Y. Ahn, Ch.-M. Kim, K.-H. Oh, K.-B. Kim: Spontaneously deposited manganese oxide on acetylene black in an aqueous potassium permanganate solution, J. Electrochem. Soc. 153, C27 (2006)CrossRef
[247]
Zurück zum Zitat X. Huang, H. Yue, A. Attia, Y. Yang: Preparation and properties of manganese oxide/carbon composites by reduction of potassium permanganate with acetylene black, J. Electrochem. Soc. 154, A26 (2007)CrossRef X. Huang, H. Yue, A. Attia, Y. Yang: Preparation and properties of manganese oxide/carbon composites by reduction of potassium permanganate with acetylene black, J. Electrochem. Soc. 154, A26 (2007)CrossRef
[248]
Zurück zum Zitat S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang: Graphene oxide-MnO2 nanocomposites for supercapacitors, ACS Nano 4, 2822 (2010)CrossRef S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang: Graphene oxide-MnO2 nanocomposites for supercapacitors, ACS Nano 4, 2822 (2010)CrossRef
[249]
Zurück zum Zitat J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei: Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes, Carbon 48, 3825 (2010)CrossRef J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei: Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes, Carbon 48, 3825 (2010)CrossRef
[250]
Zurück zum Zitat S.-W. Lee, S.-M. Bak, C.-W. Lee, C. Jaye, D.A. Fischer, B.-K. Kim, X.-Q. Yang, K.-W. Nam, K.-B. Kim: Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate ions, J. Phys. Chem. C 118, 2834 (2014)CrossRef S.-W. Lee, S.-M. Bak, C.-W. Lee, C. Jaye, D.A. Fischer, B.-K. Kim, X.-Q. Yang, K.-W. Nam, K.-B. Kim: Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate ions, J. Phys. Chem. C 118, 2834 (2014)CrossRef
[251]
Zurück zum Zitat J.W. Long, D. Bélanger, T. Brousse, W. Sugimoto, M.B. Sassin, O. Crosnier: Asymmetric electrochemical capacitors – Stretching the limits of aqueous electrolytes, MRS Bull. 36, 513 (2011)CrossRef J.W. Long, D. Bélanger, T. Brousse, W. Sugimoto, M.B. Sassin, O. Crosnier: Asymmetric electrochemical capacitors – Stretching the limits of aqueous electrolytes, MRS Bull. 36, 513 (2011)CrossRef
[252]
Zurück zum Zitat Y.G. Wang, Y.Y. Xia: Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds: I. The C/Li Mn2O4 system, J. Electrochem. Soc. 153, A450 (2006)CrossRef Y.G. Wang, Y.Y. Xia: Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds: I. The C/Li Mn2O4 system, J. Electrochem. Soc. 153, A450 (2006)CrossRef
[253]
Zurück zum Zitat Y. Xue, Y. Chen, M.L. Zhang, Y.D. Yan: A new asymmetric supercapacitor based on λ-MnO2 and activated carbon electrodes, Mater. Lett. 62, 3884 (2008)CrossRef Y. Xue, Y. Chen, M.L. Zhang, Y.D. Yan: A new asymmetric supercapacitor based on λ-MnO2 and activated carbon electrodes, Mater. Lett. 62, 3884 (2008)CrossRef
[254]
Zurück zum Zitat A. Yuan, Q. Zhang: A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte, Electrochem. Commun. 8, 1173 (2006)CrossRef A. Yuan, Q. Zhang: A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte, Electrochem. Commun. 8, 1173 (2006)CrossRef
[255]
Zurück zum Zitat J.R. Miller, P. Simon: Electrochemical capacitors for energy management, Science 321, 651 (2008)CrossRef J.R. Miller, P. Simon: Electrochemical capacitors for energy management, Science 321, 651 (2008)CrossRef
[256]
Zurück zum Zitat P. Guillemet, Y. Scudeller, T. Brousse: Multi-level reduced-order thermal modeling of electrochemical capacitors, J. Power Sources 157, 630 (2006)CrossRef P. Guillemet, Y. Scudeller, T. Brousse: Multi-level reduced-order thermal modeling of electrochemical capacitors, J. Power Sources 157, 630 (2006)CrossRef
[257]
Zurück zum Zitat P. Guillemet, Y. Scudeller, T. Brousse, J.M. Depond: Modèle thermique d’ordre réduit pour la conception de supercondensateur électrique. Détermination de la température de fonctionnement en régime stationnaire, Rev. Int. Génie Electr. 10, 695 (2007), in French P. Guillemet, Y. Scudeller, T. Brousse, J.M. Depond: Modèle thermique d’ordre réduit pour la conception de supercondensateur électrique. Détermination de la température de fonctionnement en régime stationnaire, Rev. Int. Génie Electr. 10, 695 (2007), in French
[258]
Zurück zum Zitat K.R. Prasad, N. Miura: Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor, Electrochem. Solid-State Lett. 7, A425 (2004)CrossRef K.R. Prasad, N. Miura: Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor, Electrochem. Solid-State Lett. 7, A425 (2004)CrossRef
[259]
Zurück zum Zitat J.P. Zheng, P.J. Cyang, T.R. Jow: Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc. 142, 2699 (1995)CrossRef J.P. Zheng, P.J. Cyang, T.R. Jow: Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc. 142, 2699 (1995)CrossRef
[260]
Zurück zum Zitat J.P. Zheng, T.R. Jow: High energy and high power density electrochemical capacitors, J. Power Sources 62, 155 (1996)CrossRef J.P. Zheng, T.R. Jow: High energy and high power density electrochemical capacitors, J. Power Sources 62, 155 (1996)CrossRef
[261]
Zurück zum Zitat T.R. Jow, J.P. Zheng: Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide, J. Electrochem. Soc. 145, 49 (1998)CrossRef T.R. Jow, J.P. Zheng: Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide, J. Electrochem. Soc. 145, 49 (1998)CrossRef
[262]
Zurück zum Zitat J.P. Zheng: Ruthenium oxide-carbon composite electrodes for electrochemical capacitors, Electrochem. Solid-State Lett. 2, 359 (1999)CrossRef J.P. Zheng: Ruthenium oxide-carbon composite electrodes for electrochemical capacitors, Electrochem. Solid-State Lett. 2, 359 (1999)CrossRef
[263]
Zurück zum Zitat D.A. McKeown, P.L. Hagans, L.P.P. Carette, A.E. Russell, K.E. Swinder, D.R. Rolison: Structure of hydrous ruthenium oxides: Implications for charge storage, J. Phys. Chem. B 103, 4825 (1999)CrossRef D.A. McKeown, P.L. Hagans, L.P.P. Carette, A.E. Russell, K.E. Swinder, D.R. Rolison: Structure of hydrous ruthenium oxides: Implications for charge storage, J. Phys. Chem. B 103, 4825 (1999)CrossRef
[264]
Zurück zum Zitat M. Vuković, D.J. Čukman: Electrochemical quartz crystal microbalance study of electrodeposited ruthenium, Electroanal. Chem. 474, 167 (1999)CrossRef M. Vuković, D.J. Čukman: Electrochemical quartz crystal microbalance study of electrodeposited ruthenium, Electroanal. Chem. 474, 167 (1999)CrossRef
[265]
Zurück zum Zitat C.-C. Hu, Y.-H. Huang: Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors, J. Electrochem. Soc. 146, 2465 (1999)CrossRef C.-C. Hu, Y.-H. Huang: Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors, J. Electrochem. Soc. 146, 2465 (1999)CrossRef
[266]
Zurück zum Zitat J.W. Long, K.E. Swinder, C.I. Merzbacher, D.R. Rolison: Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: The nature of capacitance in nanostructured materials, Langmuir 15, 780 (1999)CrossRef J.W. Long, K.E. Swinder, C.I. Merzbacher, D.R. Rolison: Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: The nature of capacitance in nanostructured materials, Langmuir 15, 780 (1999)CrossRef
[267]
Zurück zum Zitat Q.L. Fang, D.A. Evans, S.L. Roberson, J.P. Zheng: Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors, J. Electrochem. Soc. 148, A833 (2001)CrossRef Q.L. Fang, D.A. Evans, S.L. Roberson, J.P. Zheng: Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors, J. Electrochem. Soc. 148, A833 (2001)CrossRef
[268]
Zurück zum Zitat I.-H. Kim, K.-B. Kim: Ruthenium oxide thin film electrodes for supercapacitors, Electrochem. Solid-State Lett. 4, A62 (2001)CrossRef I.-H. Kim, K.-B. Kim: Ruthenium oxide thin film electrodes for supercapacitors, Electrochem. Solid-State Lett. 4, A62 (2001)CrossRef
[269]
Zurück zum Zitat J.P. Zheng, C.K. Huang: Electrochemical behavior of amorphous and crystalline ruthenium oxide electrodes, J. New Mater. Electrochem. Syst. 5, 41 (2002) J.P. Zheng, C.K. Huang: Electrochemical behavior of amorphous and crystalline ruthenium oxide electrodes, J. New Mater. Electrochem. Syst. 5, 41 (2002)
[270]
Zurück zum Zitat R. Fu, Z. Ma, J.P. Zheng: Proton NMR and dynamic studies of hydrous ruthenium oxide, J. Phys. Chem. B 106, 3592 (2002)CrossRef R. Fu, Z. Ma, J.P. Zheng: Proton NMR and dynamic studies of hydrous ruthenium oxide, J. Phys. Chem. B 106, 3592 (2002)CrossRef
[271]
Zurück zum Zitat J.P. Zheng, Y. Xin: Characterization of RuO2 · xH2O with various water contents, J. Power Sources 110, 86 (2002)CrossRef J.P. Zheng, Y. Xin: Characterization of RuO2 · xH2O with various water contents, J. Power Sources 110, 86 (2002)CrossRef
[272]
Zurück zum Zitat J.W. Long, K.E. Ayers, D.R. Rolison: Electrochemical characterization of high-surface-area catalysts and other nanoscale electroactive materials at sticky-carbon electrodes, J. Electroanal. Chem. 522, 58 (2002)CrossRef J.W. Long, K.E. Ayers, D.R. Rolison: Electrochemical characterization of high-surface-area catalysts and other nanoscale electroactive materials at sticky-carbon electrodes, J. Electroanal. Chem. 522, 58 (2002)CrossRef
[273]
Zurück zum Zitat W. Dmowski, T. Egami, K.E. Swinder-Lyons, C.T. Love, D.R. Rolison: Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering, J. Phys. Chem. B 106, 12677 (2002)CrossRef W. Dmowski, T. Egami, K.E. Swinder-Lyons, C.T. Love, D.R. Rolison: Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering, J. Phys. Chem. B 106, 12677 (2002)CrossRef
[274]
Zurück zum Zitat J.W. Long, K.E. Swider, C.I. Merzbacher, D.R. Rolison: Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: The nature of capacitance in nanostructured materials, Langmuir 19, 2532 (2003)CrossRef J.W. Long, K.E. Swider, C.I. Merzbacher, D.R. Rolison: Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: The nature of capacitance in nanostructured materials, Langmuir 19, 2532 (2003)CrossRef
[275]
Zurück zum Zitat W. Sugimoto, H. Iwata, Y. Murakami, Y. Takasu: Electrochemical capacitor behavior of layered ruthenic acid hydrate, J. Electrochem. Soc. 151, A1181 (2004)CrossRef W. Sugimoto, H. Iwata, Y. Murakami, Y. Takasu: Electrochemical capacitor behavior of layered ruthenic acid hydrate, J. Electrochem. Soc. 151, A1181 (2004)CrossRef
[276]
Zurück zum Zitat W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu: Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: The origin of large capacitance, J. Phys. Chem. B 109, 7330 (2005)CrossRef W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu: Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: The origin of large capacitance, J. Phys. Chem. B 109, 7330 (2005)CrossRef
[277]
Zurück zum Zitat S. Trasatti, G. Buzzanca: Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour, J. Electroanal. Chem. 29, A1–A5 (1971)CrossRef S. Trasatti, G. Buzzanca: Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour, J. Electroanal. Chem. 29, A1–A5 (1971)CrossRef
[278]
Zurück zum Zitat K. Naoi, P. Simon: New materials and new configurations for advanced electrochemical capacitors, ECS Interf. 17, 34 (2008) K. Naoi, P. Simon: New materials and new configurations for advanced electrochemical capacitors, ECS Interf. 17, 34 (2008)
[279]
Zurück zum Zitat J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang, H. Fang: Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor, J. Electrochem. Soc. 148, A1362 (2001)CrossRef J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang, H. Fang: Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor, J. Electrochem. Soc. 148, A1362 (2001)CrossRef
[280]
Zurück zum Zitat M. Ramani, B.S. Haran, R.E. White, B.N. Popov, L. Arsov: Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide, J. Power Sources 93, 209 (2001)CrossRef M. Ramani, B.S. Haran, R.E. White, B.N. Popov, L. Arsov: Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide, J. Power Sources 93, 209 (2001)CrossRef
[281]
Zurück zum Zitat C.C. Hu, W.C. Chen, K.H. Chang: How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, J. Electrochem. Soc. 151, A281 (2004)CrossRef C.C. Hu, W.C. Chen, K.H. Chang: How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, J. Electrochem. Soc. 151, A281 (2004)CrossRef
[282]
Zurück zum Zitat H. Kim, B.N. Popov: Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method, J. Power Sources 104, 52 (2002)CrossRef H. Kim, B.N. Popov: Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method, J. Power Sources 104, 52 (2002)CrossRef
[283]
Zurück zum Zitat J.H. Park, J.M. Ko, O.O. Park: Carbon nanotubeRuO2 nanocomposite electrodes for supercapacitors, J. Electrochem. Soc. 150, A864 (2003)CrossRef J.H. Park, J.M. Ko, O.O. Park: Carbon nanotubeRuO2 nanocomposite electrodes for supercapacitors, J. Electrochem. Soc. 150, A864 (2003)CrossRef
[284]
Zurück zum Zitat M. Min, K. Machida, J.H. Jang, K. Naoi: Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors, J. Electrochem. Soc. 153, A334 (2006)CrossRef M. Min, K. Machida, J.H. Jang, K. Naoi: Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors, J. Electrochem. Soc. 153, A334 (2006)CrossRef
[285]
Zurück zum Zitat C. Lin, J.A. Ritter, B.N. Popov: Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels, J. Electrochem. Soc. 146, 3155 (1999)CrossRef C. Lin, J.A. Ritter, B.N. Popov: Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels, J. Electrochem. Soc. 146, 3155 (1999)CrossRef
[286]
Zurück zum Zitat C.-C. Hu, W.-C. Chen: Effects of substrates on the capacitive performance of RuO x  · nH2O and activated carbon–RuO x electrodes for supercapacitors, Electrochim. Acta 49, 3469 (2004)CrossRef C.-C. Hu, W.-C. Chen: Effects of substrates on the capacitive performance of RuO x  · nH2O and activated carbon–RuO x electrodes for supercapacitors, Electrochim. Acta 49, 3469 (2004)CrossRef
[287]
Zurück zum Zitat W. Sugimoto, T. Kizaki, K. Yokoshima, Y. Murakami, Y. Takasu: Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode, Electrochim. Acta 49, 313 (2004)CrossRef W. Sugimoto, T. Kizaki, K. Yokoshima, Y. Murakami, Y. Takasu: Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode, Electrochim. Acta 49, 313 (2004)CrossRef
[288]
Zurück zum Zitat P. Siviglia, A. Daghetti, S. Trasatti: Influence of the preparation temperature of ruthenium dioxide on its point of zero charge, Colloids Surf. 7, 15 (1983)CrossRef P. Siviglia, A. Daghetti, S. Trasatti: Influence of the preparation temperature of ruthenium dioxide on its point of zero charge, Colloids Surf. 7, 15 (1983)CrossRef
[289]
Zurück zum Zitat S. Lavine, A.L. Smith: Theory of the differential capacity of the oxide/aqueous electrolyte interface, Discuss. Faraday Soc. 52, 290 (1971)CrossRef S. Lavine, A.L. Smith: Theory of the differential capacity of the oxide/aqueous electrolyte interface, Discuss. Faraday Soc. 52, 290 (1971)CrossRef
[290]
Zurück zum Zitat L.D. Burke, O.J. Murphy: Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes, J. Electroanal. Chem. 96, 19 (1979)CrossRef L.D. Burke, O.J. Murphy: Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes, J. Electroanal. Chem. 96, 19 (1979)CrossRef
[291]
Zurück zum Zitat L.D. Burke, O.J. Murphy: Surface area – Voltammetric charge correlation for RuO2/TiO2-based anodes, J. Electroanal. Chem. 112, 39 (1980)CrossRef L.D. Burke, O.J. Murphy: Surface area – Voltammetric charge correlation for RuO2/TiO2-based anodes, J. Electroanal. Chem. 112, 39 (1980)CrossRef
[292]
Zurück zum Zitat M.L. Green, M.E. Gross, L.E. Papa, K.J. Schnoes, D. Brasen: Chemical vapor deposition of ruthenium and ruthenium dioxide films, J. Electrochem. Soc. 132, 2681 (1985) M.L. Green, M.E. Gross, L.E. Papa, K.J. Schnoes, D. Brasen: Chemical vapor deposition of ruthenium and ruthenium dioxide films, J. Electrochem. Soc. 132, 2681 (1985)
[293]
Zurück zum Zitat S.H. Kim, J.G. Hong, S.K. Streiffer, A.I. Kingon: The effect of RuO2/Pt hybrid bottom electrode structure on the leakage and fatigue properties of chemical solution derived Pb(Zr x Ti1−x )O3 thin films, J. Mater. Res. 14, 1018 (1999)CrossRef S.H. Kim, J.G. Hong, S.K. Streiffer, A.I. Kingon: The effect of RuO2/Pt hybrid bottom electrode structure on the leakage and fatigue properties of chemical solution derived Pb(Zr x Ti1−x )O3 thin films, J. Mater. Res. 14, 1018 (1999)CrossRef
[294]
Zurück zum Zitat K.E. Swider-Lyons, C.T. Love, D.R. Rolison: Selective vapor deposition of hydrous RuO2 thin films, J. Electrochem. Soc. 152, C158 (2005)CrossRef K.E. Swider-Lyons, C.T. Love, D.R. Rolison: Selective vapor deposition of hydrous RuO2 thin films, J. Electrochem. Soc. 152, C158 (2005)CrossRef
[295]
Zurück zum Zitat K.-H. Chang, C.-C. Hu: Oxidative synthesis of RuO x  · nH2O with ideal capacitive characteristics for supercapacitors, J. Electrochem. Soc. 151, A958 (2004)CrossRef K.-H. Chang, C.-C. Hu: Oxidative synthesis of RuO x  · nH2O with ideal capacitive characteristics for supercapacitors, J. Electrochem. Soc. 151, A958 (2004)CrossRef
[296]
Zurück zum Zitat Y. Murakami, S. Tsuchiya, K. Yahikozawa, Y. Takasu: Preparations of ultrafine RuO2 and IrO2 particles by a sol-gel process, J. Mater. Sci. Lett. 13, 1773 (1994)CrossRef Y. Murakami, S. Tsuchiya, K. Yahikozawa, Y. Takasu: Preparations of ultrafine RuO2 and IrO2 particles by a sol-gel process, J. Mater. Sci. Lett. 13, 1773 (1994)CrossRef
[297]
Zurück zum Zitat S. Hadži-Jordanov, H. Angerstein-Kozlowska, B.E. Conway: Surface oxidation and H deposition at ruthenium electrodes: Resolution of component processes in potential-sweep experiments, J. Electroanal. Chem. 60, 359 (1975)CrossRef S. Hadži-Jordanov, H. Angerstein-Kozlowska, B.E. Conway: Surface oxidation and H deposition at ruthenium electrodes: Resolution of component processes in potential-sweep experiments, J. Electroanal. Chem. 60, 359 (1975)CrossRef
[298]
Zurück zum Zitat S. Hadži-Jordanov, H. Angerstein-Kozlowska, M. Vuković, B.E. Conway: The state of electrodeposited hydrogen at ruthenium electrodes, J. Phys. Chem. 81, 2271 (1977)CrossRef S. Hadži-Jordanov, H. Angerstein-Kozlowska, M. Vuković, B.E. Conway: The state of electrodeposited hydrogen at ruthenium electrodes, J. Phys. Chem. 81, 2271 (1977)CrossRef
[299]
Zurück zum Zitat S. Hadži-Jordanov, H. Angerstein-Kozlowska, M. Vuković, B.E. Conway: Reversibility and growth behavior of surface oxide films at ruthenium electrodes, J. Electrochem. Soc. 125, 1471 (1978)CrossRef S. Hadži-Jordanov, H. Angerstein-Kozlowska, M. Vuković, B.E. Conway: Reversibility and growth behavior of surface oxide films at ruthenium electrodes, J. Electrochem. Soc. 125, 1471 (1978)CrossRef
[300]
Zurück zum Zitat M. Vuković, H. Angerstein-Kozlowska, B.E. Conway: Electrocatalytic activation of ruthenium electrodes for the Cl2 and O2 evolution reactions by anodic/cathodic cycling, J. Appl. Electrochem. 12, 193 (1982)CrossRef M. Vuković, H. Angerstein-Kozlowska, B.E. Conway: Electrocatalytic activation of ruthenium electrodes for the Cl2 and O2 evolution reactions by anodic/cathodic cycling, J. Appl. Electrochem. 12, 193 (1982)CrossRef
[301]
Zurück zum Zitat V. Birss, R. Myers, H. Angerstein-Kozlowska, B.E. Conway: Electron microscopy study of formation of thick oxide films on Ir and Ru electrodes, J. Electrochem. Soc. 131, 1502 (1984)CrossRef V. Birss, R. Myers, H. Angerstein-Kozlowska, B.E. Conway: Electron microscopy study of formation of thick oxide films on Ir and Ru electrodes, J. Electrochem. Soc. 131, 1502 (1984)CrossRef
[302]
Zurück zum Zitat M. Vuković: Rotating ring–disc electrode study of the enhanced oxygen evolution on an activated ruthenium electrode, J. Chem. Soc. Faraday Trans. 86, 3743 (1990)CrossRef M. Vuković: Rotating ring–disc electrode study of the enhanced oxygen evolution on an activated ruthenium electrode, J. Chem. Soc. Faraday Trans. 86, 3743 (1990)CrossRef
[303]
Zurück zum Zitat M. Vuković, T. Valla, M. Milun: Electron spectroscopy characterization of an activated ruthenium electrode, J. Electroanal. Chem. 356, 81 (1993)CrossRef M. Vuković, T. Valla, M. Milun: Electron spectroscopy characterization of an activated ruthenium electrode, J. Electroanal. Chem. 356, 81 (1993)CrossRef
[304]
Zurück zum Zitat D. Marijan, D. Čukman, M. Vuković, M. Milun: Anodic stability of electrodeposited ruthenium: Galvanostatic, thermogravimetric and X-ray photoelectron spectroscopy studies, J. Mater. Sci. 30, 3045 (1995)CrossRef D. Marijan, D. Čukman, M. Vuković, M. Milun: Anodic stability of electrodeposited ruthenium: Galvanostatic, thermogravimetric and X-ray photoelectron spectroscopy studies, J. Mater. Sci. 30, 3045 (1995)CrossRef
[305]
Zurück zum Zitat T. Liu, W.G. Pell, B.E. Conway: Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes, Electrochim. Acta 42, 3541 (1997)CrossRef T. Liu, W.G. Pell, B.E. Conway: Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes, Electrochim. Acta 42, 3541 (1997)CrossRef
[306]
Zurück zum Zitat M. Blouiin, D. Guay: Activation of ruthenium oxide, iridium oxide, and mixed Ru x Ir1−x oxide electrodes during cathodic polarization and hydrogen evolution, J. Electrochem. Soc. 144, 573 (1997)CrossRef M. Blouiin, D. Guay: Activation of ruthenium oxide, iridium oxide, and mixed Ru x Ir1−x oxide electrodes during cathodic polarization and hydrogen evolution, J. Electrochem. Soc. 144, 573 (1997)CrossRef
[307]
Zurück zum Zitat Y. Mo, M.R. Antonio, D.A. Scherson: In situ Ru K-edge X-ray absorption fine structure studies of electroprecipitated ruthenium dioxide films with relevance to supercapacitor applications, J. Phys. Chem. B 104, 9777 (2000)CrossRef Y. Mo, M.R. Antonio, D.A. Scherson: In situ Ru K-edge X-ray absorption fine structure studies of electroprecipitated ruthenium dioxide films with relevance to supercapacitor applications, J. Phys. Chem. B 104, 9777 (2000)CrossRef
[308]
Zurück zum Zitat V. Horvat-Radošević, K. Kvastek, M. Vuković, D. Čukman: Electrochemical properties of ruthenised electrodes in the oxide layer region, J. Electroanal. Chem. 482, 188 (2000)CrossRef V. Horvat-Radošević, K. Kvastek, M. Vuković, D. Čukman: Electrochemical properties of ruthenised electrodes in the oxide layer region, J. Electroanal. Chem. 482, 188 (2000)CrossRef
[309]
Zurück zum Zitat C.C. Hu, C.C. Wang: Improving the utilization of ruthenium oxide within thick carbon–ruthenium oxide composites by annealing and anodizing for electrochemical supercapacitors, Electrochem. Commun. 4, 554 (2002)CrossRef C.C. Hu, C.C. Wang: Improving the utilization of ruthenium oxide within thick carbon–ruthenium oxide composites by annealing and anodizing for electrochemical supercapacitors, Electrochem. Commun. 4, 554 (2002)CrossRef
[310]
Zurück zum Zitat H.-M. Wu, P.-F. Hsu, W.-T. Hung: Investigation of redox reaction of Ru on carbon nanotubes by pulse potential electrochemical deposition, Diamond Related Mater. 18, 337 (2009)CrossRef H.-M. Wu, P.-F. Hsu, W.-T. Hung: Investigation of redox reaction of Ru on carbon nanotubes by pulse potential electrochemical deposition, Diamond Related Mater. 18, 337 (2009)CrossRef
[311]
Zurück zum Zitat V.D. Patake, C.D. Lokhande, O.S. Joo: Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments, Appl. Surf. Sci. 255, 4192 (2009)CrossRef V.D. Patake, C.D. Lokhande, O.S. Joo: Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments, Appl. Surf. Sci. 255, 4192 (2009)CrossRef
[312]
Zurück zum Zitat Y.Z. Zheng, H.Y. Ding, M.L. Zhang: Hydrous–ruthenium–oxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors, Thin Solid Films 516, 7381 (2008)CrossRef Y.Z. Zheng, H.Y. Ding, M.L. Zhang: Hydrous–ruthenium–oxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors, Thin Solid Films 516, 7381 (2008)CrossRef
[313]
Zurück zum Zitat T.P. Gujar, W.Y. Kim, I. Puspitasari, K.D. Jung, O.S. Joo: Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode, Int. J. Electrochem. Sci. 2, 666 (2007) T.P. Gujar, W.Y. Kim, I. Puspitasari, K.D. Jung, O.S. Joo: Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode, Int. J. Electrochem. Sci. 2, 666 (2007)
[314]
Zurück zum Zitat Y.R. Ahn, M.Y. Song, S.M. Jo, C.R. Park, D.Y. Kim: Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates, Nanotechnology 17, 2865 (2006)CrossRef Y.R. Ahn, M.Y. Song, S.M. Jo, C.R. Park, D.Y. Kim: Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates, Nanotechnology 17, 2865 (2006)CrossRef
[315]
Zurück zum Zitat B.O. Park, C.D. Lokhande, H.S. Park, K.D. Jung, O.S. Joo: Cathodic electrodeposition of RuO2 thin films from Ru(III)Cl3 solution, Mater. Chem. Phys. 87, 59 (2004)CrossRef B.O. Park, C.D. Lokhande, H.S. Park, K.D. Jung, O.S. Joo: Cathodic electrodeposition of RuO2 thin films from Ru(III)Cl3 solution, Mater. Chem. Phys. 87, 59 (2004)CrossRef
[316]
Zurück zum Zitat I. Zhitomirsky, L. Gal-Or: Ruthenium oxide deposits prepared by cathodic electrosynthesis, Mater. Lett. 31, 155 (1997)CrossRef I. Zhitomirsky, L. Gal-Or: Ruthenium oxide deposits prepared by cathodic electrosynthesis, Mater. Lett. 31, 155 (1997)CrossRef
[317]
Zurück zum Zitat C.C. Hu, M.J. Liu, K.H. Chang: Anodic deposition of hydrous ruthenium oxide for supercapaciors: Effects of the AcO- concentration, plating temperature, and oxide loading, Electrochim. Acta 53, 2679 (2008)CrossRef C.C. Hu, M.J. Liu, K.H. Chang: Anodic deposition of hydrous ruthenium oxide for supercapaciors: Effects of the AcO- concentration, plating temperature, and oxide loading, Electrochim. Acta 53, 2679 (2008)CrossRef
[318]
Zurück zum Zitat C.C. Hu, M.J. Liu, K.H. Chang: Anodic deposition of hydrous ruthenium oxide for supercapacitors, J. Power Sources 163, 1126 (2007)CrossRef C.C. Hu, M.J. Liu, K.H. Chang: Anodic deposition of hydrous ruthenium oxide for supercapacitors, J. Power Sources 163, 1126 (2007)CrossRef
[319]
Zurück zum Zitat C.C. Hu, H.R. Chiang, C.C. Wang: Electrochemical and structural investigations of oxide films anodically formed on ruthenium-plated titanium electrodes in sulfuric acid, J. Solid State Electrochem. 7, 477 (2003)CrossRef C.C. Hu, H.R. Chiang, C.C. Wang: Electrochemical and structural investigations of oxide films anodically formed on ruthenium-plated titanium electrodes in sulfuric acid, J. Solid State Electrochem. 7, 477 (2003)CrossRef
[320]
Zurück zum Zitat Y. Takasu, Y. Murakami: Electrochemical supercapacitor behavior of nanoparticulate rutile-type Ru1−x V x O2, Electrochim. Acta 45, 4135 (2000)CrossRef Y. Takasu, Y. Murakami: Electrochemical supercapacitor behavior of nanoparticulate rutile-type Ru1−x V x O2, Electrochim. Acta 45, 4135 (2000)CrossRef
[321]
Zurück zum Zitat W. Sugimoto, T. Shibutani, Y. Murakami, Y. Takasu: Design of oxide electrodes with large surface area, Electrochem. Solid-State Lett. 5, A170 (2002)CrossRef W. Sugimoto, T. Shibutani, Y. Murakami, Y. Takasu: Design of oxide electrodes with large surface area, Electrochem. Solid-State Lett. 5, A170 (2002)CrossRef
[322]
Zurück zum Zitat K. Yokoshima, T. Shibutani, M. Hirota, W. Sugimoto, Y. Murakami, Y. Takasu: Charge storage capabilities of rutile-type RuO2VO2 solid solution for electrochemical supercapacitors, J. Power Sources 160, 1480 (2006)CrossRef K. Yokoshima, T. Shibutani, M. Hirota, W. Sugimoto, Y. Murakami, Y. Takasu: Charge storage capabilities of rutile-type RuO2VO2 solid solution for electrochemical supercapacitors, J. Power Sources 160, 1480 (2006)CrossRef
[323]
Zurück zum Zitat Y.U. Jeong, A. Manthiram: Amorphous ruthenium-chromium oxides for electrochemical capacitors, Electrochem. Solid-State Lett. 3, 205 (2000)CrossRef Y.U. Jeong, A. Manthiram: Amorphous ruthenium-chromium oxides for electrochemical capacitors, Electrochem. Solid-State Lett. 3, 205 (2000)CrossRef
[324]
Zurück zum Zitat Y.U. Jeong, A. Manthiram: Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors, J. Electrochem. Soc. 148, A189 (2001)CrossRef Y.U. Jeong, A. Manthiram: Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors, J. Electrochem. Soc. 148, A189 (2001)CrossRef
[325]
Zurück zum Zitat C.-C. Wang, C.-C. Hu: Electrochemical and textural characteristics of (Ru-Sn)O x  · nH2O for supercapacitors effects of composition and annealing, J. Electrochem. Soc. 152, A370 (2005)CrossRef C.-C. Wang, C.-C. Hu: Electrochemical and textural characteristics of (Ru-Sn)O x  · nH2O for supercapacitors effects of composition and annealing, J. Electrochem. Soc. 152, A370 (2005)CrossRef
[326]
Zurück zum Zitat F. Cao, J. Prakash: Performance investigations of Pb2Ru2O6.5 oxide based pseudocapacitors, J. Power Sources 92, 40 (2001)CrossRef F. Cao, J. Prakash: Performance investigations of Pb2Ru2O6.5 oxide based pseudocapacitors, J. Power Sources 92, 40 (2001)CrossRef
[327]
Zurück zum Zitat M. Wohlfahrt-Mehrens, J. Schenk, P.M. Wilde, E. Abdelmula, P. Axmann, J. Garche: New materials for supercapacitors, J. Power Sources 105, 182 (2002)CrossRef M. Wohlfahrt-Mehrens, J. Schenk, P.M. Wilde, E. Abdelmula, P. Axmann, J. Garche: New materials for supercapacitors, J. Power Sources 105, 182 (2002)CrossRef
[328]
Zurück zum Zitat B.-O. Park, C.D. Lokhande, H.-S. Park, K.-D. Jung, O.-S. Joo: Preparation of lead ruthenium oxide and its use in electrochemical capacitor, Mater. Chem. Phys. 86, 239 (2004)CrossRef B.-O. Park, C.D. Lokhande, H.-S. Park, K.-D. Jung, O.-S. Joo: Preparation of lead ruthenium oxide and its use in electrochemical capacitor, Mater. Chem. Phys. 86, 239 (2004)CrossRef
[329]
Zurück zum Zitat T. Nanaumi, Y. Ohsawa, K. Kobayakawa, Y. Sato: High energy electrochemical capacitor materials prepared by loading ruthenium oxide on activated carbon, Electrochemistry 70, 681 (2002) T. Nanaumi, Y. Ohsawa, K. Kobayakawa, Y. Sato: High energy electrochemical capacitor materials prepared by loading ruthenium oxide on activated carbon, Electrochemistry 70, 681 (2002)
[330]
Zurück zum Zitat Y.H. Lee, J.G. Oh, H.S. Oh, H. Kim: Novel method for the preparation of carbon supported nano-sized amorphous ruthenium oxides for supercapacitors, Electrochem. Commun. 10, 1035 (2008)CrossRef Y.H. Lee, J.G. Oh, H.S. Oh, H. Kim: Novel method for the preparation of carbon supported nano-sized amorphous ruthenium oxides for supercapacitors, Electrochem. Commun. 10, 1035 (2008)CrossRef
[331]
Zurück zum Zitat K. Naoi, S. Ishimoto, N. Ogihara, Y. Nakagawa, S. Hatta: Encapsulation of nanodot ruthenium oxide into KB for electrochemical capacitors, J. Electrochem. Soc. 156, A52 (2009)CrossRef K. Naoi, S. Ishimoto, N. Ogihara, Y. Nakagawa, S. Hatta: Encapsulation of nanodot ruthenium oxide into KB for electrochemical capacitors, J. Electrochem. Soc. 156, A52 (2009)CrossRef
[332]
Zurück zum Zitat W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu: Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage, Angew. Chem. Int. Ed. 42, 4092 (2003)CrossRef W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu: Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage, Angew. Chem. Int. Ed. 42, 4092 (2003)CrossRef
[333]
Zurück zum Zitat W. Sugimoto, M. Yonezawa, Y. Takasu: Pseudocapacitance of ruthenium oxide nanosheets derived from layered NaRuO2 with α-NaFe O2-type structure, Abstr. 214th Electrochem. Soc. Meet. (2008) W. Sugimoto, M. Yonezawa, Y. Takasu: Pseudocapacitance of ruthenium oxide nanosheets derived from layered NaRuO2 with α-NaFe O2-type structure, Abstr. 214th Electrochem. Soc. Meet. (2008)
[334]
Zurück zum Zitat S. Aridizzone, G. Fregonara, S. Trasatti: ‘‘Inner’’ and ‘‘outer’’ active surface of RuO2 electrodes, Electrochim. Acta 35, 263 (1990)CrossRef S. Aridizzone, G. Fregonara, S. Trasatti: ‘‘Inner’’ and ‘‘outer’’ active surface of RuO2 electrodes, Electrochim. Acta 35, 263 (1990)CrossRef
[335]
Zurück zum Zitat J. Rishpon, S. Gottesfeld: Resolution of fast and slow charging processes in ruthenium oxide films: An AC impedance and optical investigation, J. Electrochem. Soc. 131, 1960 (1984)CrossRef J. Rishpon, S. Gottesfeld: Resolution of fast and slow charging processes in ruthenium oxide films: An AC impedance and optical investigation, J. Electrochem. Soc. 131, 1960 (1984)CrossRef
[336]
Zurück zum Zitat I.-H. Kim, K.-B. Kim: Ruthenium oxide thin film electrodes prepared by electrostatic spray deposition and their charge storage mechanism, J. Electrochem. Soc. 151, E7 (2004)CrossRef I.-H. Kim, K.-B. Kim: Ruthenium oxide thin film electrodes prepared by electrostatic spray deposition and their charge storage mechanism, J. Electrochem. Soc. 151, E7 (2004)CrossRef
[337]
Zurück zum Zitat A. Foelske, O. Barbieri, M. Hahn, R. Kötz: An X-ray photoelectron spectroscopy study of hydrous ruthenium oxide powders with various water contents for supercapacitors, Electrochem. Solid-State Lett. 9, A268 (2006)CrossRef A. Foelske, O. Barbieri, M. Hahn, R. Kötz: An X-ray photoelectron spectroscopy study of hydrous ruthenium oxide powders with various water contents for supercapacitors, Electrochem. Solid-State Lett. 9, A268 (2006)CrossRef
[338]
Zurück zum Zitat D. Rochefort, P. Dabo, D. Guay, P.M.A. Sherwood: XPS investigations of thermally prepared RuO2 electrodes in reductive conditions, Electrochim. Acta 48, 4245 (2003)CrossRef D. Rochefort, P. Dabo, D. Guay, P.M.A. Sherwood: XPS investigations of thermally prepared RuO2 electrodes in reductive conditions, Electrochim. Acta 48, 4245 (2003)CrossRef
[339]
Zurück zum Zitat C. Chabanier, E. Irissou, D. Guay, J.F. Pelletier, M. Sutton, L.B. Lurio: Hydrogen absorption in thermally prepared RuO2 electrode, Electrochem. Solid-State Lett. 5, E40 (2002)CrossRef C. Chabanier, E. Irissou, D. Guay, J.F. Pelletier, M. Sutton, L.B. Lurio: Hydrogen absorption in thermally prepared RuO2 electrode, Electrochem. Solid-State Lett. 5, E40 (2002)CrossRef
[340]
Zurück zum Zitat C. Chabanier, D. Guay: Activation and hydrogen absorption in thermally prepared RuO2 and IrO2, J. Electroanal. Chem. 570, 13 (2004)CrossRef C. Chabanier, D. Guay: Activation and hydrogen absorption in thermally prepared RuO2 and IrO2, J. Electroanal. Chem. 570, 13 (2004)CrossRef
[341]
Zurück zum Zitat O. Barbieri, M. Hahn, A. Foelske, R. Kötz: Effect of electronic resistance and water content on the performance of RuO2 for supercapacitors, J. Electrochem. Soc. 153, A2049 (2006)CrossRef O. Barbieri, M. Hahn, A. Foelske, R. Kötz: Effect of electronic resistance and water content on the performance of RuO2 for supercapacitors, J. Electrochem. Soc. 153, A2049 (2006)CrossRef
[342]
Zurück zum Zitat I.C. Stefan, Y. Mo, M.R. Antonio, D.A. Scherson: In situ Ru LII and LIII edge X-ray absorption near edge structure of electrodeposited ruthenium dioxide films, J. Phys. Chem. B 106, 12373 (2002)CrossRef I.C. Stefan, Y. Mo, M.R. Antonio, D.A. Scherson: In situ Ru LII and LIII edge X-ray absorption near edge structure of electrodeposited ruthenium dioxide films, J. Phys. Chem. B 106, 12373 (2002)CrossRef
[343]
Zurück zum Zitat Y. Mo, W.-B. Cai, J. Dong, P.R. Carey, D.A. Scherson: In situ surface enhanced raman scattering of ruthenium dioxide films in acid electrolytes, Electrochem. Solid-State Lett. 4, E37 (2001)CrossRef Y. Mo, W.-B. Cai, J. Dong, P.R. Carey, D.A. Scherson: In situ surface enhanced raman scattering of ruthenium dioxide films in acid electrolytes, Electrochem. Solid-State Lett. 4, E37 (2001)CrossRef
[344]
Zurück zum Zitat H. Chol Jo, K.M. Kim, H. Cheong, S.-H. Lee, S.K. Deb: In situ Raman spectroscopy of RuO2 · xH2O, Electrochem. Solid-State Lett. 8, E39 (2005)CrossRef H. Chol Jo, K.M. Kim, H. Cheong, S.-H. Lee, S.K. Deb: In situ Raman spectroscopy of RuO2 · xH2O, Electrochem. Solid-State Lett. 8, E39 (2005)CrossRef
[345]
Zurück zum Zitat S.-H. Lee, P. Liu, M.J. Seong, H.M. Cheong, C.E. Tracy, S.K. Deb: Electrochemical supercapacitors for optical modulation, Electrochem. Solid-State Lett. 6, A40 (2003)CrossRef S.-H. Lee, P. Liu, M.J. Seong, H.M. Cheong, C.E. Tracy, S.K. Deb: Electrochemical supercapacitors for optical modulation, Electrochem. Solid-State Lett. 6, A40 (2003)CrossRef
[346]
Zurück zum Zitat S.-H. Lee, P. Liu, H.M. Cheong, C.E. Tracy, S.K. Deb: Electrochromism of amorphous ruthenium oxide thin films, Solid State Ionics 165, 217 (2003)CrossRef S.-H. Lee, P. Liu, H.M. Cheong, C.E. Tracy, S.K. Deb: Electrochromism of amorphous ruthenium oxide thin films, Solid State Ionics 165, 217 (2003)CrossRef
[347]
Zurück zum Zitat H.Y. Lee, J.B. Goodenough: Ideal supercapacitor behavior of amorphous V2O5 · nH2O in potassium chloride (KCl) aqueous solution, J. Solid State Chem. 148, 81 (1999)CrossRef H.Y. Lee, J.B. Goodenough: Ideal supercapacitor behavior of amorphous V2O5 · nH2O in potassium chloride (KCl) aqueous solution, J. Solid State Chem. 148, 81 (1999)CrossRef
[348]
Zurück zum Zitat N.L. Wu: Nanocrystalline oxide supercapacitors, Mater. Chem. Phys. 75, 6 (2002)CrossRef N.L. Wu: Nanocrystalline oxide supercapacitors, Mater. Chem. Phys. 75, 6 (2002)CrossRef
[349]
Zurück zum Zitat Q. Zhou, X. Wang, Y. Liu, Y. He, Y. Gao, J. Liu: High rate capabilities of NiCo2O4-based hierarchical superstructures for rechargeable charge storage, J. Electrochem. Soc. 161, A1922 (2014)CrossRef Q. Zhou, X. Wang, Y. Liu, Y. He, Y. Gao, J. Liu: High rate capabilities of NiCo2O4-based hierarchical superstructures for rechargeable charge storage, J. Electrochem. Soc. 161, A1922 (2014)CrossRef
[350]
Zurück zum Zitat T. Brousse, J.W. Long, D. Bélanger: To be or not to be pseudocapacitive?, J. Electrochem. Soc. 162, A5185 (2015)CrossRef T. Brousse, J.W. Long, D. Bélanger: To be or not to be pseudocapacitive?, J. Electrochem. Soc. 162, A5185 (2015)CrossRef
[351]
Zurück zum Zitat H. Wang, H. Yi, X. Chen, X. Wang: Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties, Electrochim. Acta 105, 353 (2013)CrossRef H. Wang, H. Yi, X. Chen, X. Wang: Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties, Electrochim. Acta 105, 353 (2013)CrossRef
[352]
Zurück zum Zitat B.E. Conway, W.G. Pell, T.C. Liu: Behavior of molybdenum nitrides as materials for electrochemical capacitors: Comparison with ruthenium oxide, J. Electrochem. Soc. 145, 1882 (1998)CrossRef B.E. Conway, W.G. Pell, T.C. Liu: Behavior of molybdenum nitrides as materials for electrochemical capacitors: Comparison with ruthenium oxide, J. Electrochem. Soc. 145, 1882 (1998)CrossRef
[353]
Zurück zum Zitat H. Gao, Y.-J. Ting, N.P. Kherani, K. Lian: Ultra-high-rate all-solid pseudocapacitive electrochemical capacitors, J. Power Sources 222, 301 (2013)CrossRef H. Gao, Y.-J. Ting, N.P. Kherani, K. Lian: Ultra-high-rate all-solid pseudocapacitive electrochemical capacitors, J. Power Sources 222, 301 (2013)CrossRef
[354]
Zurück zum Zitat R. Lucio Porto, R. Frappier, J.B. Ducros, C. Aucher, H. Mosqueda, S. Shenu, B. Chavillon, F. Tessier, F. Cheviré, T. Brousse: Titanium and vanadium oxynitride powders as pseudo-capacitive materials for electrochemical capacitors, Electrochim. Acta 82, 257 (2012)CrossRef R. Lucio Porto, R. Frappier, J.B. Ducros, C. Aucher, H. Mosqueda, S. Shenu, B. Chavillon, F. Tessier, F. Cheviré, T. Brousse: Titanium and vanadium oxynitride powders as pseudo-capacitive materials for electrochemical capacitors, Electrochim. Acta 82, 257 (2012)CrossRef
[355]
Zurück zum Zitat D. Choi, E. George, E. Blomgren, N. Kumta: Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors, Adv. Mater. 18, 1178 (2006)CrossRef D. Choi, E. George, E. Blomgren, N. Kumta: Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors, Adv. Mater. 18, 1178 (2006)CrossRef
[356]
Zurück zum Zitat O. Kartachova, A.M. Glushenkov, Y. Chen, H. Zhang, X.J. Dai, Y. Chen: Electrochemical capacitance of mesoporous tungsten oxynitride in aqueous electrolytes, J. Power Sources 220, 298 (2012)CrossRef O. Kartachova, A.M. Glushenkov, Y. Chen, H. Zhang, X.J. Dai, Y. Chen: Electrochemical capacitance of mesoporous tungsten oxynitride in aqueous electrolytes, J. Power Sources 220, 298 (2012)CrossRef
[357]
Zurück zum Zitat S. Bouhtiyya, R. Lucio Porto, B. Laïk, P. Boulet, F. Capon, J.P. Pereira-Ramos, T. Brousse, J.F. Pierson: Application of sputtered ruthenium nitride thin films as electrode material for energy-storage devices, Scr. Mater. 68, 659 (2013)CrossRef S. Bouhtiyya, R. Lucio Porto, B. Laïk, P. Boulet, F. Capon, J.P. Pereira-Ramos, T. Brousse, J.F. Pierson: Application of sputtered ruthenium nitride thin films as electrode material for energy-storage devices, Scr. Mater. 68, 659 (2013)CrossRef
[358]
Zurück zum Zitat J.H. Park, O.O. Park: Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes, J. Power Sources 111, 185 (2002)CrossRef J.H. Park, O.O. Park: Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes, J. Power Sources 111, 185 (2002)CrossRef
[359]
Zurück zum Zitat Y.-G. Wang, L. Cheng, Y.-Y. Xia: Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution, J. Power Sources 153, 191 (2006)CrossRef Y.-G. Wang, L. Cheng, Y.-Y. Xia: Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution, J. Power Sources 153, 191 (2006)CrossRef
[360]
Zurück zum Zitat C.-Z. Yuan, B. Gao, X.-G. Zhang: Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor, J. Power Sources 173, 606 (2007)CrossRef C.-Z. Yuan, B. Gao, X.-G. Zhang: Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor, J. Power Sources 173, 606 (2007)CrossRef
[361]
Zurück zum Zitat A. Du Pasquier, I. Plitz, S. Menocal, G. Amatucci: A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications, J. Power Sources 115, 171 (2003)CrossRef A. Du Pasquier, I. Plitz, S. Menocal, G. Amatucci: A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications, J. Power Sources 115, 171 (2003)CrossRef
[362]
Zurück zum Zitat A. Yoshino, T. Tsubata, M. Shimoyamada, H. Satake, Y. Okano, S. Mori, S. Yata: Development of a lithium-type advanced energy storage device, J. Electrochem. Soc. 151, A2180 (2004)CrossRef A. Yoshino, T. Tsubata, M. Shimoyamada, H. Satake, Y. Okano, S. Mori, S. Yata: Development of a lithium-type advanced energy storage device, J. Electrochem. Soc. 151, A2180 (2004)CrossRef
[363]
Zurück zum Zitat T. Brousse, R. Marchand, P.-L. Taberna, P. Simon: TiO2 (B)/activated carbon non-aqueous hybrid system for energy storage, J. Power Sources 158, 571 (2006)CrossRef T. Brousse, R. Marchand, P.-L. Taberna, P. Simon: TiO2 (B)/activated carbon non-aqueous hybrid system for energy storage, J. Power Sources 158, 571 (2006)CrossRef
[364]
Zurück zum Zitat T. Aida, I. Murayama, K. Yamada, M. Morita: An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode, Electrochem. Solid-State Lett. 9, A534 (2006)CrossRef T. Aida, I. Murayama, K. Yamada, M. Morita: An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode, Electrochem. Solid-State Lett. 9, A534 (2006)CrossRef
[365]
Zurück zum Zitat T. Aida, I. Murayama, K. Yamada, M. Morita: High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode, J. Power Sources 166, 462 (2007)CrossRef T. Aida, I. Murayama, K. Yamada, M. Morita: High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode, J. Power Sources 166, 462 (2007)CrossRef
[366]
Zurück zum Zitat S.-H. Woo, K. Dokko, H. Nakano, K. Kanamura: Bimodal porous carbon as a negative electrode material for lithium-ion capacitors, Electrochemistry 75, 635 (2007)CrossRef S.-H. Woo, K. Dokko, H. Nakano, K. Kanamura: Bimodal porous carbon as a negative electrode material for lithium-ion capacitors, Electrochemistry 75, 635 (2007)CrossRef
[367]
Zurück zum Zitat V. Khomenko, E. Raymundo-Piñero, F. Béguin: High-energy density graphite/AC capacitor in organic electrolyte, J. Power Sources 177, 643 (2008)CrossRef V. Khomenko, E. Raymundo-Piñero, F. Béguin: High-energy density graphite/AC capacitor in organic electrolyte, J. Power Sources 177, 643 (2008)CrossRef
[368]
Zurück zum Zitat S. Stewart, P. Albertus, V. Srinivasan, I. Plitz, N. Pereira, G. Amatucci, J. Newman: Optimizing the performance of lithium titanate spinel paired with activated carbon or iron phosphate, J. Electrochem. Soc. 155, A253 (2008)CrossRef S. Stewart, P. Albertus, V. Srinivasan, I. Plitz, N. Pereira, G. Amatucci, J. Newman: Optimizing the performance of lithium titanate spinel paired with activated carbon or iron phosphate, J. Electrochem. Soc. 155, A253 (2008)CrossRef
[369]
Zurück zum Zitat H. Laforgue, P. Simon, J.F. Fauvarque, M. Mastragostino, F. Soavi, J.F. Sarrau, P. Lailler, M. Conte, E. Rossi, S. Saguatti: Activated carbon/conducting polymer hybrid supercapacitors, J. Electrochem. Soc. 150, A645 (2003)CrossRef H. Laforgue, P. Simon, J.F. Fauvarque, M. Mastragostino, F. Soavi, J.F. Sarrau, P. Lailler, M. Conte, E. Rossi, S. Saguatti: Activated carbon/conducting polymer hybrid supercapacitors, J. Electrochem. Soc. 150, A645 (2003)CrossRef
[370]
Zurück zum Zitat H. Wang, M. Yoshio: Graphite, a suitable positive electrode material for high-energy electrochemical capacitors, Electrochem. Commun. 8, 1481 (2006)CrossRef H. Wang, M. Yoshio: Graphite, a suitable positive electrode material for high-energy electrochemical capacitors, Electrochem. Commun. 8, 1481 (2006)CrossRef
[371]
Zurück zum Zitat L.J. Hardwick, M. Hahn, P. Ruch, M. Holzapfel, W. Scheifele, H. Buqa, F. Krumeich, P. Novák, R. Kötz: An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite, Electrochim. Acta 52, 675 (2006)CrossRef L.J. Hardwick, M. Hahn, P. Ruch, M. Holzapfel, W. Scheifele, H. Buqa, F. Krumeich, P. Novák, R. Kötz: An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite, Electrochim. Acta 52, 675 (2006)CrossRef
[372]
Zurück zum Zitat P.W. Ruch, M. Hahn, F. Rosciano, M. Holzapfel, H. Kaiser, W. Scheifele, B. Schmitt, P. Novák, R. Kötz, A. Wokaun: In situ X-ray diffraction of the intercalation of (CC2H5)4N+ and BF4− into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes, Electrochim. Acta 53, 1074 (2007)CrossRef P.W. Ruch, M. Hahn, F. Rosciano, M. Holzapfel, H. Kaiser, W. Scheifele, B. Schmitt, P. Novák, R. Kötz, A. Wokaun: In situ X-ray diffraction of the intercalation of (CC2H5)4N+ and BF4− into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes, Electrochim. Acta 53, 1074 (2007)CrossRef
[373]
Zurück zum Zitat H. Wang, M. Yoshio: Performance of AC/graphite capacitors at high weight ratios of AC/graphite, J. Power Sources 177, 681 (2008)CrossRef H. Wang, M. Yoshio: Performance of AC/graphite capacitors at high weight ratios of AC/graphite, J. Power Sources 177, 681 (2008)CrossRef
[374]
Zurück zum Zitat Y. Yokoyama, N. Shimosaka, H. Matsumoto, M. Yoshio, T. Ishihara: Effects of supporting electrolyte on the storage capacity of hybrid capacitors using graphitic and activated carbon, Electrochem. Solid-State Lett. 11, A72 (2008)CrossRef Y. Yokoyama, N. Shimosaka, H. Matsumoto, M. Yoshio, T. Ishihara: Effects of supporting electrolyte on the storage capacity of hybrid capacitors using graphitic and activated carbon, Electrochem. Solid-State Lett. 11, A72 (2008)CrossRef
[375]
Zurück zum Zitat K. Naoi: Nanohybrid capacitor: The next generation electrochemical capacitors, Fuel Cells 10, 825–833 (2010)CrossRef K. Naoi: Nanohybrid capacitor: The next generation electrochemical capacitors, Fuel Cells 10, 825–833 (2010)CrossRef
[376]
Zurück zum Zitat T. Kawasato, K. Hiratsuka, T. Morimoto: Development of the coin-type double layer capacitor for back-up power sources of IC memories, AGC Res. Rep. 52, 39–46 (2002) T. Kawasato, K. Hiratsuka, T. Morimoto: Development of the coin-type double layer capacitor for back-up power sources of IC memories, AGC Res. Rep. 52, 39–46 (2002)
[377]
Zurück zum Zitat K. Chiba, T. Ueda, H. Yamamoto: Performance of electrolytic solution composed of linear-structure sulfones and electric double-layer capacitor using it, Electrochem. 48th Batter. Symp. Jpn (2007) p. 2C16 K. Chiba, T. Ueda, H. Yamamoto: Performance of electrolytic solution composed of linear-structure sulfones and electric double-layer capacitor using it, Electrochem. 48th Batter. Symp. Jpn (2007) p. 2C16
[378]
Zurück zum Zitat K. Naoi, K. Chiba: High-voltage electrodeelectrolyte interface in ECs and hybrid capacitor. In: Nanotechnology in Advanced Electrochemical Power Sources, ed. by S.R.S. Prabaharan, M.S. Michael (Pan Stanford Publ., Singapore 2014) K. Naoi, K. Chiba: High-voltage electrodeelectrolyte interface in ECs and hybrid capacitor. In: Nanotechnology in Advanced Electrochemical Power Sources, ed. by S.R.S. Prabaharan, M.S. Michael (Pan Stanford Publ., Singapore 2014)
[379]
Zurück zum Zitat C. Nunjundiah, S.F. McDevitt, V.R. Koch: Differential capacitance measurements in solvent-free ionic liquids at hg and c interfaces, J. Electrochem. Soc. 144, 3392 (1997)CrossRef C. Nunjundiah, S.F. McDevitt, V.R. Koch: Differential capacitance measurements in solvent-free ionic liquids at hg and c interfaces, J. Electrochem. Soc. 144, 3392 (1997)CrossRef
[380]
Zurück zum Zitat M. Ue, M. Takeda, T. Takahashi, M. Takehara: Ionic liquids with low melting points and their application to double-layer capacitor electrolytes, Electrochem. Solid-State Lett. 5, A119 (2002)CrossRef M. Ue, M. Takeda, T. Takahashi, M. Takehara: Ionic liquids with low melting points and their application to double-layer capacitor electrolytes, Electrochem. Solid-State Lett. 5, A119 (2002)CrossRef
[381]
Zurück zum Zitat M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, Y. Ito: Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors, J. Electrochem. Soc. 150, A499 (2003)CrossRef M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, Y. Ito: Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors, J. Electrochem. Soc. 150, A499 (2003)CrossRef
[382]
Zurück zum Zitat T. Sato, G. Masuda, K. Takagi: Electrochemical properties of novel ionic liquids for electric double layer capacitor applications, Electrochim. Acta 49, 3603 (2004)CrossRef T. Sato, G. Masuda, K. Takagi: Electrochemical properties of novel ionic liquids for electric double layer capacitor applications, Electrochim. Acta 49, 3603 (2004)CrossRef
[383]
Zurück zum Zitat I. Murayama, N. Yoshimoto, M. Egashira, M. Morita, Y. Kobayashi, M. Ishikawa: Characteristics of electric double layer capacitors with an ionic liquid electrolyte containing Li ion, Electrochemistry 73, 600 (2005) I. Murayama, N. Yoshimoto, M. Egashira, M. Morita, Y. Kobayashi, M. Ishikawa: Characteristics of electric double layer capacitors with an ionic liquid electrolyte containing Li ion, Electrochemistry 73, 600 (2005)
[384]
Zurück zum Zitat S. Shiraishi, N. Nishina, A. Oya, R. Hagiwara: Electric double layer capacitance of activated carbon fibers in ionic liquid : EMImBF4, Electrochemistry 73, 593 (2005) S. Shiraishi, N. Nishina, A. Oya, R. Hagiwara: Electric double layer capacitance of activated carbon fibers in ionic liquid : EMImBF4, Electrochemistry 73, 593 (2005)
[385]
Zurück zum Zitat Y. Nagao, Y. Nakayama, H. Oda, M. Ishikawa: Activation of an ionic liquid electrolyte for electric double layer capacitors by addition of BaTiO3 to carbon electrodes, J. Power Sources 166, 595 (2007)CrossRef Y. Nagao, Y. Nakayama, H. Oda, M. Ishikawa: Activation of an ionic liquid electrolyte for electric double layer capacitors by addition of BaTiO3 to carbon electrodes, J. Power Sources 166, 595 (2007)CrossRef
[386]
Zurück zum Zitat A. Balducci, R. Dugas, P.L. Taberna, P. Simon, D. Plée, M. Mastragostino, S. Passerini: High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte, J. Power Sources 165, 922 (2007)CrossRef A. Balducci, R. Dugas, P.L. Taberna, P. Simon, D. Plée, M. Mastragostino, S. Passerini: High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte, J. Power Sources 165, 922 (2007)CrossRef
[387]
Zurück zum Zitat A. Lewandowski, A. Olejniczak: N-Methyl-N-propylpiperidinium bis(trifluoromethanesulphonyl)imide as an electrolyte for carbon-based double-layer capacitors, J. Power Sources 172, 487 (2007)CrossRef A. Lewandowski, A. Olejniczak: N-Methyl-N-propylpiperidinium bis(trifluoromethanesulphonyl)imide as an electrolyte for carbon-based double-layer capacitors, J. Power Sources 172, 487 (2007)CrossRef
[388]
Zurück zum Zitat H. Zhang, G. Cao, Y. Yang, Z. Gu: Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes, J. Electrochem. Soc. 155, K19 (2008)CrossRef H. Zhang, G. Cao, Y. Yang, Z. Gu: Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes, J. Electrochem. Soc. 155, K19 (2008)CrossRef
[389]
Zurück zum Zitat N. Handa, T. Sugimoto, M. Yamagata, M. Kikuta, M. Kono, M. Ishikawa: A neat ionic liquid electrolyte based on FSI anion for electric double layer capacitor, J. Power Sources 185, 1585 (2008)CrossRef N. Handa, T. Sugimoto, M. Yamagata, M. Kikuta, M. Kono, M. Ishikawa: A neat ionic liquid electrolyte based on FSI anion for electric double layer capacitor, J. Power Sources 185, 1585 (2008)CrossRef
[390]
Zurück zum Zitat T. Devarajan, S. Higashiya, C. Dangler, M. Rane-Fondacaro, J. Snyder, P. Haldar: Novel ionic liquid electrolyte for electrochemical double layer capacitors, Electrochem. Commun. 11, 680 (2009)CrossRef T. Devarajan, S. Higashiya, C. Dangler, M. Rane-Fondacaro, J. Snyder, P. Haldar: Novel ionic liquid electrolyte for electrochemical double layer capacitors, Electrochem. Commun. 11, 680 (2009)CrossRef
[391]
Zurück zum Zitat A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, F. Soavi: Ionic liquids for hybrid supercapacitors, Electrochem. Commun. 6, 566 (2004)CrossRef A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, F. Soavi: Ionic liquids for hybrid supercapacitors, Electrochem. Commun. 6, 566 (2004)CrossRef
[392]
Zurück zum Zitat A. Balducci, W.A. Henderson, M. Mastragostino, S. Passerini, P. Simon, F. Soavi: Cycling stability of a hybrid activated carbon/poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte, Electrochim. Acta 50, 2233 (2005)CrossRef A. Balducci, W.A. Henderson, M. Mastragostino, S. Passerini, P. Simon, F. Soavi: Cycling stability of a hybrid activated carbon/poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte, Electrochim. Acta 50, 2233 (2005)CrossRef
[393]
Zurück zum Zitat C. Arbizzani, M. Biso, D. Cericola, M. Lazzari, F. Soavi, M. Mastragostino: Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes, J. Power Sources 185, 1575 (2008)CrossRef C. Arbizzani, M. Biso, D. Cericola, M. Lazzari, F. Soavi, M. Mastragostino: Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes, J. Power Sources 185, 1575 (2008)CrossRef
[394]
Zurück zum Zitat M. Ishikawa, M. Ihara, M. Morita, Y. Matsuda: Electric double layer capacitors with new gel electrolytes, Electrochim. Acta 40, 2217 (1995)CrossRef M. Ishikawa, M. Ihara, M. Morita, Y. Matsuda: Electric double layer capacitors with new gel electrolytes, Electrochim. Acta 40, 2217 (1995)CrossRef
[395]
Zurück zum Zitat X. Liu, T. Osaka: Properties of electric double-layer capacitors with various polymer gel electrolytes, J. Electrochem. Soc. 144, 3066 (1997)CrossRef X. Liu, T. Osaka: Properties of electric double-layer capacitors with various polymer gel electrolytes, J. Electrochem. Soc. 144, 3066 (1997)CrossRef
[396]
Zurück zum Zitat S.A. Hashmi, R.J. Latham, R.G. Linford, W.S. Schlindwein: Studies on all solid state electric double layer capacitors using proton and lithium ion conducting polymer electrolytes, J. Chem. Soc. Faraday Trans. 93, 4177 (1997)CrossRef S.A. Hashmi, R.J. Latham, R.G. Linford, W.S. Schlindwein: Studies on all solid state electric double layer capacitors using proton and lithium ion conducting polymer electrolytes, J. Chem. Soc. Faraday Trans. 93, 4177 (1997)CrossRef
[397]
Zurück zum Zitat T. Osaka, X. Liu, M. Mojima: Acetylene black/poly(vinylidene fluoride) gel electrolyte composite electrode for an electric double-layer capacitor, J. Power Sources 74, 122 (1998)CrossRef T. Osaka, X. Liu, M. Mojima: Acetylene black/poly(vinylidene fluoride) gel electrolyte composite electrode for an electric double-layer capacitor, J. Power Sources 74, 122 (1998)CrossRef
[398]
Zurück zum Zitat Y. Matsuda, K. Inoue, H. Takeuchi, Y. Okuhama: Gel polymer electrolytes for electric double layer capacitors, Solid State Ionics 113–115, 103 (1998)CrossRef Y. Matsuda, K. Inoue, H. Takeuchi, Y. Okuhama: Gel polymer electrolytes for electric double layer capacitors, Solid State Ionics 113–115, 103 (1998)CrossRef
[399]
Zurück zum Zitat T. Osaka, X. Liu, M. Nojima, T. Momma: An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder, J. Electrochem. Soc. 146, 1724 (1999)CrossRef T. Osaka, X. Liu, M. Nojima, T. Momma: An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder, J. Electrochem. Soc. 146, 1724 (1999)CrossRef
[400]
Zurück zum Zitat M. Ishikawa, L. Yamamoto, M. Morita, Y. Ando: Performance of electric double layer capacitors with gel electrolytes containing an asymmetric ammonium salt, Electrochemistry 69, 437 (2001) M. Ishikawa, L. Yamamoto, M. Morita, Y. Ando: Performance of electric double layer capacitors with gel electrolytes containing an asymmetric ammonium salt, Electrochemistry 69, 437 (2001)
[401]
Zurück zum Zitat X. Liu, T. Osaka: New insights into the carbon/polymer electrolyte interface in the electric double layer capacitor, Electrochemistry 69, 422 (2001) X. Liu, T. Osaka: New insights into the carbon/polymer electrolyte interface in the electric double layer capacitor, Electrochemistry 69, 422 (2001)
[402]
Zurück zum Zitat S. Mitra, A.K. Shukla, S. Sampath: Electrochemical capacitors with plasticized gel-polymer electrolytes, J. Power Sources 101, 213 (2001)CrossRef S. Mitra, A.K. Shukla, S. Sampath: Electrochemical capacitors with plasticized gel-polymer electrolytes, J. Power Sources 101, 213 (2001)CrossRef
[403]
Zurück zum Zitat C.-M. Yang, W.I. Cho, J.K. Lee, H.-W. Rhee, B.W. Cho: EDLC with UV-cured composite polymer electrolyte based on poly[(ethylene glycol) diacrylate]/poly(vinylidene fluoride)/poly(methyl methacrylate) blends, Electrochem. Solid-State Lett. 8, A91 (2005)CrossRef C.-M. Yang, W.I. Cho, J.K. Lee, H.-W. Rhee, B.W. Cho: EDLC with UV-cured composite polymer electrolyte based on poly[(ethylene glycol) diacrylate]/poly(vinylidene fluoride)/poly(methyl methacrylate) blends, Electrochem. Solid-State Lett. 8, A91 (2005)CrossRef
[404]
Zurück zum Zitat A. Lewandowski, A. Šwiderska: Electrochemical capacitors with polymer electrolytes based on ionic liquids, Electrochim. Acta 161, 243 (2003) A. Lewandowski, A. Šwiderska: Electrochemical capacitors with polymer electrolytes based on ionic liquids, Electrochim. Acta 161, 243 (2003)
[405]
Zurück zum Zitat S. Yamazaki, A. Takegawa, Y. Kaneko, J. Kadokawa, M. Yamagata, M. Ishikawa: An acidic cellulose–chitin hybrid gel as novel electrolyte for an electric double layer capacitor, Electrochem. Commun. 11, 68 (2009)CrossRef S. Yamazaki, A. Takegawa, Y. Kaneko, J. Kadokawa, M. Yamagata, M. Ishikawa: An acidic cellulose–chitin hybrid gel as novel electrolyte for an electric double layer capacitor, Electrochem. Commun. 11, 68 (2009)CrossRef
[406]
Zurück zum Zitat P. Staiti, M. Minutoli, F. Lufrano: All solid electric double layer capacitors based on Nafion ionomer, Electrochim. Acta 47, 2795 (2002)CrossRef P. Staiti, M. Minutoli, F. Lufrano: All solid electric double layer capacitors based on Nafion ionomer, Electrochim. Acta 47, 2795 (2002)CrossRef
[407]
Zurück zum Zitat W. Sugimoto, K. Yokoshima, K. Ohuchi, Y. Murakami, Y. Takasu: Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors, J. Electrochem. Soc. 153, A255 (2006)CrossRef W. Sugimoto, K. Yokoshima, K. Ohuchi, Y. Murakami, Y. Takasu: Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors, J. Electrochem. Soc. 153, A255 (2006)CrossRef
[408]
Zurück zum Zitat A. Lewandowski, M. Zajder, E. Frackowiak, F. Béguin: Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte, Electrochim. Acta 46, 2777 (2001)CrossRef A. Lewandowski, M. Zajder, E. Frackowiak, F. Béguin: Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte, Electrochim. Acta 46, 2777 (2001)CrossRef
[409]
Zurück zum Zitat Y.-G. Wang, X.-G. Zhang: Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites, Electrochim. Acta 49, 1957 (2004)CrossRef Y.-G. Wang, X.-G. Zhang: Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites, Electrochim. Acta 49, 1957 (2004)CrossRef
[410]
Zurück zum Zitat C.-C. Yang, S.-T. Hsu, W.-C. Chien: All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes, J. Power Sources 152, 303 (2005)CrossRef C.-C. Yang, S.-T. Hsu, W.-C. Chien: All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes, J. Power Sources 152, 303 (2005)CrossRef
[411]
Zurück zum Zitat C. Yuan, X. Zhang, Q. Wu, B. Gao: Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte, Solid State Ionics 177, 1237 (2006)CrossRef C. Yuan, X. Zhang, Q. Wu, B. Gao: Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte, Solid State Ionics 177, 1237 (2006)CrossRef
[412]
Zurück zum Zitat N.A. Choudary, S. Sampath, A.K. Shukla: Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors, J. Electrochem. Soc. 155, A74 (2007)CrossRef N.A. Choudary, S. Sampath, A.K. Shukla: Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors, J. Electrochem. Soc. 155, A74 (2007)CrossRef
[413]
Zurück zum Zitat C. Iwakura, H. Wada, S. Nohara, N. Furukawa, H. Inoue, M. Morita: New electric double layer capacitor with polymer hydrogel electrolyte, Electrochem. Solid-State Lett. 6, A37 (2003)CrossRef C. Iwakura, H. Wada, S. Nohara, N. Furukawa, H. Inoue, M. Morita: New electric double layer capacitor with polymer hydrogel electrolyte, Electrochem. Solid-State Lett. 6, A37 (2003)CrossRef
[414]
Zurück zum Zitat H. Wada, S. Nohara, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, M. Morita, C. Iwakura: Electrochemical characteristics of electric double layer capacitor using sulfonated polypropylene separator impregnated with polymer hydrogel electrolyte, Electrochim. Acta 49, 4871 (2004)CrossRef H. Wada, S. Nohara, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, M. Morita, C. Iwakura: Electrochemical characteristics of electric double layer capacitor using sulfonated polypropylene separator impregnated with polymer hydrogel electrolyte, Electrochim. Acta 49, 4871 (2004)CrossRef
[415]
Zurück zum Zitat H. Wada, K. Yoshikawa, S. Nohara, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, C. Iwakura: Electrochemical characteristics of new electric double layer capacitor with acidic polymer hydrogel electrolyte, J. Power Sources 159, 1464 (2006)CrossRef H. Wada, K. Yoshikawa, S. Nohara, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, C. Iwakura: Electrochemical characteristics of new electric double layer capacitor with acidic polymer hydrogel electrolyte, J. Power Sources 159, 1464 (2006)CrossRef
[416]
Zurück zum Zitat S. Nohara, T. Asahina, H. Wada, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, C. Iwakura: Hybrid capacitor with activated carbon electrode, Ni(OH)2 electrode and polymer hydrogel electrolyte, J. Power Sources 157, 605 (2006)CrossRef S. Nohara, T. Asahina, H. Wada, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, C. Iwakura: Hybrid capacitor with activated carbon electrode, Ni(OH)2 electrode and polymer hydrogel electrolyte, J. Power Sources 157, 605 (2006)CrossRef
[417]
Zurück zum Zitat S. Nohara, T. Miura, C. Iwakura, H. Inoue: Electric double layer capacitor using polymer hydrogel electrolyte with 4M H2SO4 aqueous solution, Electrochemistry 75, 579 (2007)CrossRef S. Nohara, T. Miura, C. Iwakura, H. Inoue: Electric double layer capacitor using polymer hydrogel electrolyte with 4M H2SO4 aqueous solution, Electrochemistry 75, 579 (2007)CrossRef
[418]
Zurück zum Zitat H. Inoue, T. Morimoto, S. Nohara: Electrochemical characterization of a hybrid capacitor with Zn and activated carbon electrodes, Electrochem. Solid-State Lett. 10, A261 (2007)CrossRef H. Inoue, T. Morimoto, S. Nohara: Electrochemical characterization of a hybrid capacitor with Zn and activated carbon electrodes, Electrochem. Solid-State Lett. 10, A261 (2007)CrossRef
[419]
Zurück zum Zitat J. Qiao, N. Yoshimoto, M. Ishikawa, M. Morita: Acetic acid-doped poly(ethylene oxide)-modified poly(methacrylate): A new proton conducting polymeric gel electrolyte, Electrochim. Acta 47, 3441 (2002)CrossRef J. Qiao, N. Yoshimoto, M. Ishikawa, M. Morita: Acetic acid-doped poly(ethylene oxide)-modified poly(methacrylate): A new proton conducting polymeric gel electrolyte, Electrochim. Acta 47, 3441 (2002)CrossRef
[420]
Zurück zum Zitat F. Lufrano, P. Staiti: Conductivity and capacitance properties of a supercapacitor based on Nafion electrolyte in a nonaqueous system, Electrochem. Solid-State Lett. 7, A447 (2004)CrossRef F. Lufrano, P. Staiti: Conductivity and capacitance properties of a supercapacitor based on Nafion electrolyte in a nonaqueous system, Electrochem. Solid-State Lett. 7, A447 (2004)CrossRef
[421]
Zurück zum Zitat M. Morita, N. Ohsumi, N. Yoshimoto, M. Egashira: Proton-conducting non-aqueous gel electrolyte for a redox capacitor system, Electrochemistry 75, 641 (2007)CrossRef M. Morita, N. Ohsumi, N. Yoshimoto, M. Egashira: Proton-conducting non-aqueous gel electrolyte for a redox capacitor system, Electrochemistry 75, 641 (2007)CrossRef
[422]
Zurück zum Zitat B. Mattsson, H. Ericson, L.M. Torell, F. Sundholm: Micro-Raman investigations of PVDF-based proton-conducting membranes, J. Polym. Sci. A 37, 3317 (1999)CrossRef B. Mattsson, H. Ericson, L.M. Torell, F. Sundholm: Micro-Raman investigations of PVDF-based proton-conducting membranes, J. Polym. Sci. A 37, 3317 (1999)CrossRef
[423]
Zurück zum Zitat H. Ericson, C. Svanberg, A. Brodin, A.M. Grillone, S. Panero, B. Scrosati, P. Jacobsson: Poly(methyl methacrylate)-based protonic gel electrolytes: A spectroscopic study, Electrochim. Acta 45, 1409 (2000)CrossRef H. Ericson, C. Svanberg, A. Brodin, A.M. Grillone, S. Panero, B. Scrosati, P. Jacobsson: Poly(methyl methacrylate)-based protonic gel electrolytes: A spectroscopic study, Electrochim. Acta 45, 1409 (2000)CrossRef
[424]
Zurück zum Zitat G. Żukowska, N. Chojnacka, W. Wieczorek: Effect of gel composition on the conductivity of proton-conducting gel polymeric electrolytes doped with H3PO4, Chem. Matter 12, 3578 (2000)CrossRef G. Żukowska, N. Chojnacka, W. Wieczorek: Effect of gel composition on the conductivity of proton-conducting gel polymeric electrolytes doped with H3PO4, Chem. Matter 12, 3578 (2000)CrossRef
[425]
Zurück zum Zitat W. Wieczorek, G. Żukowska, R. Borkowska, S.H. Chung, S. Greenbaum: A basic investigation of anhydrous proton conducting gel electrolytes, Electrochim. Acta 46, 1427 (2001)CrossRef W. Wieczorek, G. Żukowska, R. Borkowska, S.H. Chung, S. Greenbaum: A basic investigation of anhydrous proton conducting gel electrolytes, Electrochim. Acta 46, 1427 (2001)CrossRef
[426]
Zurück zum Zitat B.-K. Choi, S.-H. Park, S.-W. Joo, M.-S. Gong: Electrical and thermal properties of poly(vinylidene fluoride-hexafluoropropylene)-based proton conducting gel-electrolytes, Electrochim. Acta 50, 649 (2004)CrossRef B.-K. Choi, S.-H. Park, S.-W. Joo, M.-S. Gong: Electrical and thermal properties of poly(vinylidene fluoride-hexafluoropropylene)-based proton conducting gel-electrolytes, Electrochim. Acta 50, 649 (2004)CrossRef
[427]
Zurück zum Zitat H.P. Singh, S.S. Sekhon: Non-aqueous proton conducting polymer gel electrolytes, Electrochim. Acta 50, 621 (2004)CrossRef H.P. Singh, S.S. Sekhon: Non-aqueous proton conducting polymer gel electrolytes, Electrochim. Acta 50, 621 (2004)CrossRef
[428]
Zurück zum Zitat J. Qiao, N. Yoshimoto, M. Morita: Proton conducting behavior of a novel polymeric gel membrane based on poly(ethylene oxide)-grafted-poly(methacrylate), J. Power Sources 105, 45 (2002)CrossRef J. Qiao, N. Yoshimoto, M. Morita: Proton conducting behavior of a novel polymeric gel membrane based on poly(ethylene oxide)-grafted-poly(methacrylate), J. Power Sources 105, 45 (2002)CrossRef
[429]
Zurück zum Zitat J. Qiao, N. Yoshimoto, M. Ishikawa, M. Morita: Proton conductance and spectroscopic characteristics of acid-doped polymer gels based on poly(ethylene oxide)-modified polymethacrylate, Solid State Ionics 156, 415 (2003)CrossRef J. Qiao, N. Yoshimoto, M. Ishikawa, M. Morita: Proton conductance and spectroscopic characteristics of acid-doped polymer gels based on poly(ethylene oxide)-modified polymethacrylate, Solid State Ionics 156, 415 (2003)CrossRef
[430]
Zurück zum Zitat M. Morita, J. Qiao, N. Yoshimoto, M. Ishikawa: Application of proton conducting polymeric electrolytes to electrochemical capacitors, Electrochim. Acta 50, 837 (2004)CrossRef M. Morita, J. Qiao, N. Yoshimoto, M. Ishikawa: Application of proton conducting polymeric electrolytes to electrochemical capacitors, Electrochim. Acta 50, 837 (2004)CrossRef
[431]
Zurück zum Zitat M. Ue, K. Ida, S. Mori: Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors, J. Elecrochem. Soc. 141, 2989 (1994)CrossRef M. Ue, K. Ida, S. Mori: Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors, J. Elecrochem. Soc. 141, 2989 (1994)CrossRef
[432]
Zurück zum Zitat A. Chu, P. Braatz: Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. Initial characterization, J. Power Sources 112, 236 (2006)CrossRef A. Chu, P. Braatz: Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. Initial characterization, J. Power Sources 112, 236 (2006)CrossRef
[433]
Zurück zum Zitat T. Morimoto: Development and industrialization of electric double-layer capacitors, TANSO 214, 202 (2004), in JapaneseCrossRef T. Morimoto: Development and industrialization of electric double-layer capacitors, TANSO 214, 202 (2004), in JapaneseCrossRef
[434]
Zurück zum Zitat O. Bohlen, J. Kowal, D.U. Sauer: Ageing behaviour of electrochemical double layer capacitors: Part I. Experimental study and ageing model, J. Power Sources 172, 468 (2007)CrossRef O. Bohlen, J. Kowal, D.U. Sauer: Ageing behaviour of electrochemical double layer capacitors: Part I. Experimental study and ageing model, J. Power Sources 172, 468 (2007)CrossRef
[435]
Zurück zum Zitat M. Hahn, A. Würsig, R. Gallay, P. Novak, R. Kötz: Gas evolution in activated carbon/propylene carbonate based double-layer capacitors, Electrochem. Commun. 7, 925 (2005)CrossRef M. Hahn, A. Würsig, R. Gallay, P. Novak, R. Kötz: Gas evolution in activated carbon/propylene carbonate based double-layer capacitors, Electrochem. Commun. 7, 925 (2005)CrossRef
[436]
Zurück zum Zitat F.P. Campana, M. Hahn, A. Foelske, P. Ruch, R. Kötz, H. Siegenthaler: Intercalation into and film formation on pyrolytic graphite in a supercapacitor-type electrolyte (C2H5)4NBF4/propylene carbonate, Electrochem. Commun. 8, 1363 (2006)CrossRef F.P. Campana, M. Hahn, A. Foelske, P. Ruch, R. Kötz, H. Siegenthaler: Intercalation into and film formation on pyrolytic graphite in a supercapacitor-type electrolyte (C2H5)4NBF4/propylene carbonate, Electrochem. Commun. 8, 1363 (2006)CrossRef
[437]
Zurück zum Zitat L.F. Xiao, Q.F. Yue, C.G. Xia, L.W. Xu: Supported basic ionic liquid: Highly effective catalyst for the synthesis of 1,2-propylene glycol from hydrolysis of propylene carbonate, J. Molec. Catal. A 279, 230 (2008)CrossRef L.F. Xiao, Q.F. Yue, C.G. Xia, L.W. Xu: Supported basic ionic liquid: Highly effective catalyst for the synthesis of 1,2-propylene glycol from hydrolysis of propylene carbonate, J. Molec. Catal. A 279, 230 (2008)CrossRef
[438]
Zurück zum Zitat P. Kurzweil, M. Chwistek: Electrochemical stability of organic electrolytes in supercapacitors: Spectroscopy and gas analysis of decomposition products, J. Power Sources 176, 555 (2008)CrossRef P. Kurzweil, M. Chwistek: Electrochemical stability of organic electrolytes in supercapacitors: Spectroscopy and gas analysis of decomposition products, J. Power Sources 176, 555 (2008)CrossRef
[439]
Zurück zum Zitat S. Ishimoto, Y. Asakawa, M. Shinya, K. Naoi: Degradation responses of activated-carbon-based edlcs for higher voltage operation and their factors, J. Electrochem. Soc. 156, A563 (2009)CrossRef S. Ishimoto, Y. Asakawa, M. Shinya, K. Naoi: Degradation responses of activated-carbon-based edlcs for higher voltage operation and their factors, J. Electrochem. Soc. 156, A563 (2009)CrossRef
[440]
Zurück zum Zitat J.R. Miller: A brief history of supercapacitors, Battery Energy Storage Technol. 18, 61–78 (2007) J.R. Miller: A brief history of supercapacitors, Battery Energy Storage Technol. 18, 61–78 (2007)
[441]
Zurück zum Zitat S. Razoumov, A. Klementov, S. Litvinenko, A. Beliakov: Asymmetric Electrochemical Capacitor and Method Of Making, US Patent 6222723 (2001) S. Razoumov, A. Klementov, S. Litvinenko, A. Beliakov: Asymmetric Electrochemical Capacitor and Method Of Making, US Patent 6222723 (2001)
[442]
Zurück zum Zitat H. Uchi: Performance and application – DLCAP, Proc. Adv. Capacitor World Summit, San Diego (2005) H. Uchi: Performance and application – DLCAP, Proc. Adv. Capacitor World Summit, San Diego (2005)
[444]
Zurück zum Zitat J.R. Miller: Capacitor Tech Talk 18, 121–128 (2007) J.R. Miller: Capacitor Tech Talk 18, 121–128 (2007)
[445]
Zurück zum Zitat J. Groot: Energy storage systems for heavy-duty HEVs, Proc. Adv. Capacitor World Summit, La Jolla (2009) J. Groot: Energy storage systems for heavy-duty HEVs, Proc. Adv. Capacitor World Summit, La Jolla (2009)
[446]
Zurück zum Zitat L.A. Viterna: Hybrid electric transit bus, Proc. SAE Int. Truck Bus Meet., Cleveland (1997), paper 973202 L.A. Viterna: Hybrid electric transit bus, Proc. SAE Int. Truck Bus Meet., Cleveland (1997), paper 973202
[447]
Zurück zum Zitat T. Bartley: Ultracapacitors no longer just a technology: Real, safe, efficient, available, Proc. Adv. Capacitor World Summit, Washington (2004) T. Bartley: Ultracapacitors no longer just a technology: Real, safe, efficient, available, Proc. Adv. Capacitor World Summit, Washington (2004)
[448]
Zurück zum Zitat G. Willms: Hybrid-electric drive systems for heavy duty vehicles, Proc. Adv. Capacitor World Summit, San Diego (2008) G. Willms: Hybrid-electric drive systems for heavy duty vehicles, Proc. Adv. Capacitor World Summit, San Diego (2008)
[449]
Zurück zum Zitat T. Apalenek: Advanced energy storage – Field experience, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009) T. Apalenek: Advanced energy storage – Field experience, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009)
[450]
Zurück zum Zitat M. Bolton: Energy storage systems for severe duty truck applications, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009) M. Bolton: Energy storage systems for severe duty truck applications, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009)
[451]
Zurück zum Zitat J. Gonder, A. Pesaran, J. Lustbader, H. Tataria: Fuel economy and performance of mild hybrids with ultracapacitors, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009) J. Gonder, A. Pesaran, J. Lustbader, H. Tataria: Fuel economy and performance of mild hybrids with ultracapacitors, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009)
[452]
Zurück zum Zitat J. Schneeberger, H. Hakvoort: Requirements and design considerations of automotive double-layer capacitor modules, Proc. 8th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Tampa (2008) J. Schneeberger, H. Hakvoort: Requirements and design considerations of automotive double-layer capacitor modules, Proc. 8th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Tampa (2008)
[453]
Zurück zum Zitat I.N. Varakin, A.D. Klementov, S.V. Litvienko, S.V. Starodubtsev, A.B. Stepanov: Application of ultracapacitors as traction energy sources, Proc. 7th Int. Semin. Double Layer Capacitor Similar Energy Storage Dev., Deerfield Beach (1997) I.N. Varakin, A.D. Klementov, S.V. Litvienko, S.V. Starodubtsev, A.B. Stepanov: Application of ultracapacitors as traction energy sources, Proc. 7th Int. Semin. Double Layer Capacitor Similar Energy Storage Dev., Deerfield Beach (1997)
[454]
Zurück zum Zitat T. Geist: A 2000 V ultracapacitor for transmission stability, Adv. Capacitor World Summit, Washington (2004) T. Geist: A 2000 V ultracapacitor for transmission stability, Adv. Capacitor World Summit, Washington (2004)
[455]
Zurück zum Zitat K. Rechenberg, M. Meinert: Requirements on DLC energy storage units for rolling stock, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009) K. Rechenberg, M. Meinert: Requirements on DLC energy storage units for rolling stock, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009)
[456]
Zurück zum Zitat M. Steiner, M. Klohr, S. Pagiela: Energy storage system with ultracaps on board of railway vehicles, Eur. Conf. Power Electronics Appl. (2007), doi:10.1109/EPE.2007.4417400 M. Steiner, M. Klohr, S. Pagiela: Energy storage system with ultracaps on board of railway vehicles, Eur. Conf. Power Electronics Appl. (2007), doi:10.1109/EPE.2007.4417400
[457]
Zurück zum Zitat M. Meinert: Experiences of the hybrid energy storage system Sitras HES based on a NiMH-Battery and double layer capacitors in tram operation, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009) M. Meinert: Experiences of the hybrid energy storage system Sitras HES based on a NiMH-Battery and double layer capacitors in tram operation, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009)
[458]
Zurück zum Zitat A. Schneuwly: Efficient energy storage by ultracapacitors to address new demands for electrical power within vehicles, Proc. 8th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Tampa (2008) A. Schneuwly: Efficient energy storage by ultracapacitors to address new demands for electrical power within vehicles, Proc. 8th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Tampa (2008)
[459]
Zurück zum Zitat J.R. Miller: Boom boom time for ultracaps, Battery Energy Storage Technol. 16, 61–71 (2007) J.R. Miller: Boom boom time for ultracaps, Battery Energy Storage Technol. 16, 61–71 (2007)
[461]
Zurück zum Zitat A.I. Beliakov: Russian supercapacitors to start engines, Battery Int. 102, 102 (1993) A.I. Beliakov: Russian supercapacitors to start engines, Battery Int. 102, 102 (1993)
[462]
Zurück zum Zitat A.I. Beliakov: Investigation and developing of double layer capacitors for start of internal combustion engines and of accelerating systems of hybrid electric drive, Proc. 6th Int. Semin. Double Layer Capacitor Similar Energy, Storage Dev., Deerfield Beach (1996) A.I. Beliakov: Investigation and developing of double layer capacitors for start of internal combustion engines and of accelerating systems of hybrid electric drive, Proc. 6th Int. Semin. Double Layer Capacitor Similar Energy, Storage Dev., Deerfield Beach (1996)
[463]
Zurück zum Zitat J.R. Miller, J. Burgel, H. Catherino, F. Krestik, J. Monroe, J.R. Stafford: Truck starting using electrochemical capacitors, Int. Truck Bus Meet., Indianapolis (1998), SAE Tech. Paper 982794 J.R. Miller, J. Burgel, H. Catherino, F. Krestik, J. Monroe, J.R. Stafford: Truck starting using electrochemical capacitors, Int. Truck Bus Meet., Indianapolis (1998), SAE Tech. Paper 982794
[464]
Zurück zum Zitat J.R. Miller: Engineering battery-capacitor combinations in high power applications: Diesel engine starting, Proc. 9th Int. Semin. Double Layer Capacitor Similar Energy Storage Dev., Deerfield Beach (1999) J.R. Miller: Engineering battery-capacitor combinations in high power applications: Diesel engine starting, Proc. 9th Int. Semin. Double Layer Capacitor Similar Energy Storage Dev., Deerfield Beach (1999)
[465]
Zurück zum Zitat W. Ong, R. Johnston: Electrochemical capacitors and their potential application to heavy duty vehicles, Int. Truck Bus Meet. Portland (2000), SAE Tech. Paper 200-01-3495 W. Ong, R. Johnston: Electrochemical capacitors and their potential application to heavy duty vehicles, Int. Truck Bus Meet. Portland (2000), SAE Tech. Paper 200-01-3495
[466]
Zurück zum Zitat J.R. Miller: Standards for engine-starting capacitors, Proc. 15th Int. Semin. Double Layer Capacitor Hybrid Energy Storage Dev., Deerfield Beach (2005) J.R. Miller: Standards for engine-starting capacitors, Proc. 15th Int. Semin. Double Layer Capacitor Hybrid Energy Storage Dev., Deerfield Beach (2005)
[467]
Zurück zum Zitat T. Furukawa: Engine cranking with green technology, Proc. Adv. Capacitor World Summit, San Diego (2008) T. Furukawa: Engine cranking with green technology, Proc. Adv. Capacitor World Summit, San Diego (2008)
[469]
Zurück zum Zitat J. Furukawa, T. Takada, H. Sakamoto, L.T. Lam, T. Sugimura, E. Sato, M. Tsuyuki: Development of the flooded-type ultrabattery and battery sensor for micro-HEV applications, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009) J. Furukawa, T. Takada, H. Sakamoto, L.T. Lam, T. Sugimura, E. Sato, M. Tsuyuki: Development of the flooded-type ultrabattery and battery sensor for micro-HEV applications, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009)
[470]
Zurück zum Zitat T. Furukawa: DLCAP energy storage system multiple application, Proc. Adv. Capacitor World Summit, San Diego (2006) T. Furukawa: DLCAP energy storage system multiple application, Proc. Adv. Capacitor World Summit, San Diego (2006)
[472]
Zurück zum Zitat C. Greenhill: Capacitors in fuel cell forklifts, Proc. Adv. Capacitor World Summit, San Diego (2006) C. Greenhill: Capacitors in fuel cell forklifts, Proc. Adv. Capacitor World Summit, San Diego (2006)
[473]
Zurück zum Zitat T. Yamamoto: The characteristics of MEIDENSHA’s bipolar laminate type electric double layer capacitor and its applications, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009) T. Yamamoto: The characteristics of MEIDENSHA’s bipolar laminate type electric double layer capacitor and its applications, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009)
[474]
Zurück zum Zitat I. Gyuk: Supercapacitors for electricity storage, scope and projects, Proc. Adv. Capacitor World Summit, Washington (2004) I. Gyuk: Supercapacitors for electricity storage, scope and projects, Proc. Adv. Capacitor World Summit, Washington (2004)
[475]
Zurück zum Zitat S. Kazaryan: Characteristics of the PbO2|H2SO4|C ECs, Proc. Adv. Capacitor World Summit, San Diego (2007) S. Kazaryan: Characteristics of the PbO2|H2SO4|C ECs, Proc. Adv. Capacitor World Summit, San Diego (2007)
Metadaten
Titel
Materials for Electrochemical Capacitors
verfasst von
Thierry Brousse
Daniel Bélanger
Kazumi Chiba
Minato Egashira
Frédéric Favier
Jeffrey Long
John R. Miller
Masayuki Morita
Katsuhiko Naoi
Patrice Simon
Wataru Sugimoto
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46657-5_16