Skip to main content

2016 | OriginalPaper | Buchkapitel

3. Anodisation and Sol–Gel Coatings as Surface Modification to Promote Osseointegration in Metallic Prosthesis

verfasst von : Silvia Cere, Andrea Gomez Sanchez, Josefina Ballarre

Erschienen in: Biomedical and Pharmaceutical Applications of Electrochemistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Orthopaedic devices for permanent implants require short term fixation and fast bone attachment and healing. Superficial modification of surgical implants is often used as a tool to generate a surface that besides being protective could also allow the integration of the metal to the human body, creating a “bioactive” surface that has the ability of creating a natural bonding between the metal surface and the existing bone. One way of achieving this surface modification is by means anodisation since an increase in the thickness and changes in the topography of the native oxide formed on metals can produce an improvement in bone response. Other possibility in the surface modification of the metallic implants is the coatings with organic-inorganic ceramic or glassy coatings as a way to improve the implant performance.The aim of this charter is review the surface modifications produced on orthopaedic and dentistry metallic materials by anodisation and by hybrid coatings by sol gel technique with the aim of promoting both corrosion resistance in physiological fluids and bioactivity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Virtanen S (2008) Corrosion of biomedical implant materials. Corros Rev 26(2–3):147–172 Virtanen S (2008) Corrosion of biomedical implant materials. Corros Rev 26(2–3):147–172
2.
Zurück zum Zitat Virtanen S, Milosev I, Gomez-Barrena E et al (2008) Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater 4(3):468–476CrossRef Virtanen S, Milosev I, Gomez-Barrena E et al (2008) Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater 4(3):468–476CrossRef
3.
Zurück zum Zitat Black J (1988) Does corrosion matter? J Bone Joint Surg (Br) 70-B(4):517–520 Black J (1988) Does corrosion matter? J Bone Joint Surg (Br) 70-B(4):517–520
4.
Zurück zum Zitat Jacobs JJ, Gilbert JL, Urban RM (1998) Corrosion of metal orthopaedic implants. J Bone Joint Surg (Br) 80-A(2):268–282 Jacobs JJ, Gilbert JL, Urban RM (1998) Corrosion of metal orthopaedic implants. J Bone Joint Surg (Br) 80-A(2):268–282
5.
Zurück zum Zitat Pennington M, Grieve R, Sekhon JS et al (2013) Cemented, cementless, and hybrid prostheses for total hip replacement: cost effectiveness analysis. BMJ 346:f1026CrossRef Pennington M, Grieve R, Sekhon JS et al (2013) Cemented, cementless, and hybrid prostheses for total hip replacement: cost effectiveness analysis. BMJ 346:f1026CrossRef
6.
Zurück zum Zitat Rothman RH, Cohn JC (1990) Cemented versus cementless total hip arthroplasty: a critical review. Clin Orthop Relat Res 254:153–169 Rothman RH, Cohn JC (1990) Cemented versus cementless total hip arthroplasty: a critical review. Clin Orthop Relat Res 254:153–169
7.
Zurück zum Zitat Albrektsson T, Branemark PI, Hansson HA et al (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52(2):155–170CrossRef Albrektsson T, Branemark PI, Hansson HA et al (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52(2):155–170CrossRef
8.
Zurück zum Zitat Ehrenfest DMD, Coelho PG, Byung-Soo K et al (2009) Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 28(4):198–206CrossRef Ehrenfest DMD, Coelho PG, Byung-Soo K et al (2009) Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 28(4):198–206CrossRef
9.
Zurück zum Zitat Metikos-Hukovic M, Grubac Z (2003) The growth kinetics of thin anodic WO3 films investigated by electrochemical impedance spectroscopy. J Electroanal Chem 556:167–178CrossRef Metikos-Hukovic M, Grubac Z (2003) The growth kinetics of thin anodic WO3 films investigated by electrochemical impedance spectroscopy. J Electroanal Chem 556:167–178CrossRef
10.
Zurück zum Zitat Chappell MJ, Leach JSL (1980) Passivity and breakdown of passivity on valve metals. In: Frankenthal RP, Kruger J (eds) Passivity of metals. The Electrochemical Society, Pennington, pp 1003–1034 Chappell MJ, Leach JSL (1980) Passivity and breakdown of passivity on valve metals. In: Frankenthal RP, Kruger J (eds) Passivity of metals. The Electrochemical Society, Pennington, pp 1003–1034
11.
Zurück zum Zitat Michaelis A (2008) Valve metal, si and ceramic oxides as dielectric films for passive and active electronic devices. In: Electrochemical surface modification. Wiley, New York, pp 1–106CrossRef Michaelis A (2008) Valve metal, si and ceramic oxides as dielectric films for passive and active electronic devices. In: Electrochemical surface modification. Wiley, New York, pp 1–106CrossRef
12.
Zurück zum Zitat Hurlen T, Gulbrandsen E (1994) Growth of anodic films on valve metals. Electrochim Acta 39(14):2169–2172CrossRef Hurlen T, Gulbrandsen E (1994) Growth of anodic films on valve metals. Electrochim Acta 39(14):2169–2172CrossRef
13.
Zurück zum Zitat Habazaki H, Ogasawara T, Konno H et al (2005) Growth of anodic oxide films on oxygen-containing niobium. Electrochim Acta 50:5334–5339CrossRef Habazaki H, Ogasawara T, Konno H et al (2005) Growth of anodic oxide films on oxygen-containing niobium. Electrochim Acta 50:5334–5339CrossRef
14.
Zurück zum Zitat Habazaki H, Shimizu K, Nagata S et al (2005) Inter-relationship between structure and dielectric properties of crystelline anodic zirconia. Thin Solid Films 479:144–151CrossRef Habazaki H, Shimizu K, Nagata S et al (2005) Inter-relationship between structure and dielectric properties of crystelline anodic zirconia. Thin Solid Films 479:144–151CrossRef
15.
Zurück zum Zitat López MF, Gutiérrez A, Jiménez JA (2001) Surface characterization of new non-toxic titanium alloys for use as biomaterials. Surf Sci 482–485:300–305CrossRef López MF, Gutiérrez A, Jiménez JA (2001) Surface characterization of new non-toxic titanium alloys for use as biomaterials. Surf Sci 482–485:300–305CrossRef
16.
Zurück zum Zitat Nag S, Banerjee R, Fraser HL (2005) Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Mater Sci Eng C 25(3):357–362CrossRef Nag S, Banerjee R, Fraser HL (2005) Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Mater Sci Eng C 25(3):357–362CrossRef
17.
Zurück zum Zitat Li SJ, Yang R, Li S et al (2004) Wear characteristics of Ti–Nb–Ta–Zr and Ti–6Al–4V alloys for biomedical applications. Wear 257(9–10):869–876CrossRef Li SJ, Yang R, Li S et al (2004) Wear characteristics of Ti–Nb–Ta–Zr and Ti–6Al–4V alloys for biomedical applications. Wear 257(9–10):869–876CrossRef
18.
Zurück zum Zitat Li SJ, Yang R, Niinomi M et al (2004) Formation and growth of calcium phosphate on the surface of oxidized Ti–29Nb–13Ta–4.6Zr alloy. Biomaterials 25(13):2525–2532CrossRef Li SJ, Yang R, Niinomi M et al (2004) Formation and growth of calcium phosphate on the surface of oxidized Ti–29Nb–13Ta–4.6Zr alloy. Biomaterials 25(13):2525–2532CrossRef
19.
Zurück zum Zitat Taddei EB, Henriques VAR, Silva CRM et al (2004) Production of new titanium alloy for orthopedic implants. Mater Sci Eng C 24:683–687CrossRef Taddei EB, Henriques VAR, Silva CRM et al (2004) Production of new titanium alloy for orthopedic implants. Mater Sci Eng C 24:683–687CrossRef
20.
Zurück zum Zitat Navarro M, Michiardi A, Castano C et al (2008) Biomaterials in orthopaedics. J R Soc Interface 5:1137–1158CrossRef Navarro M, Michiardi A, Castano C et al (2008) Biomaterials in orthopaedics. J R Soc Interface 5:1137–1158CrossRef
21.
Zurück zum Zitat Han X, Liu H, Wang D et al (2011) In vitro biological effects of Ti2448 alloy modified by micro-arc oxidation and alkali heatment. J Mater Sci Technol 27(4):317–324CrossRef Han X, Liu H, Wang D et al (2011) In vitro biological effects of Ti2448 alloy modified by micro-arc oxidation and alkali heatment. J Mater Sci Technol 27(4):317–324CrossRef
22.
Zurück zum Zitat Minagar S, Berndt CC, Wang J et al (2012) A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 8(8):2875–2888CrossRef Minagar S, Berndt CC, Wang J et al (2012) A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 8(8):2875–2888CrossRef
23.
Zurück zum Zitat Hernández-López JM, Conde A, de Damborenea J et al (2015) Correlation of the nanostructure of the anodic layers fabricated on Ti13Nb13Zr with the electrochemical impedance response. Corros Sci 94:61–69CrossRef Hernández-López JM, Conde A, de Damborenea J et al (2015) Correlation of the nanostructure of the anodic layers fabricated on Ti13Nb13Zr with the electrochemical impedance response. Corros Sci 94:61–69CrossRef
24.
Zurück zum Zitat Hanawa T (2002) Evaluation techniques of metallic biomaterials in vitro. Sci Technol Adv Mater 3:289–295CrossRef Hanawa T (2002) Evaluation techniques of metallic biomaterials in vitro. Sci Technol Adv Mater 3:289–295CrossRef
25.
Zurück zum Zitat Hanawa T (2004) Metal ion release from metal implants. Mater Sci Eng C 24:745–752CrossRef Hanawa T (2004) Metal ion release from metal implants. Mater Sci Eng C 24:745–752CrossRef
26.
Zurück zum Zitat Tengvall P, Lundström I (1992) Physico-chemical considerations of titanium as a biomaterial. Clin Mater 9:115–134CrossRef Tengvall P, Lundström I (1992) Physico-chemical considerations of titanium as a biomaterial. Clin Mater 9:115–134CrossRef
27.
Zurück zum Zitat Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 47(3-4):49–121CrossRef Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 47(3-4):49–121CrossRef
28.
Zurück zum Zitat Milosev I, Kosec T, Strehblow H-H (2008) XPS and EIS study of the passive film formed on orthopedic Ti-6Al-7Nb alloy in Hank’s physiological solution. Electrochim Acta 53:3547–3558CrossRef Milosev I, Kosec T, Strehblow H-H (2008) XPS and EIS study of the passive film formed on orthopedic Ti-6Al-7Nb alloy in Hank’s physiological solution. Electrochim Acta 53:3547–3558CrossRef
29.
Zurück zum Zitat Kim H-M, Miyaji F, Kokubo T et al (1996) Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 32:409–417CrossRef Kim H-M, Miyaji F, Kokubo T et al (1996) Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 32:409–417CrossRef
30.
Zurück zum Zitat Wang CX, Wang M, Zhou X (2003) Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study. Biomaterials 24:3069–3077CrossRef Wang CX, Wang M, Zhou X (2003) Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study. Biomaterials 24:3069–3077CrossRef
31.
Zurück zum Zitat Wang XJ, Li YC, Lin JG et al (2008) In vitro bioactivity evaluation of titanium and niobium metals with different surface morphologies. Acta Biomater 4(5):1530–1535CrossRef Wang XJ, Li YC, Lin JG et al (2008) In vitro bioactivity evaluation of titanium and niobium metals with different surface morphologies. Acta Biomater 4(5):1530–1535CrossRef
32.
Zurück zum Zitat Faure J, Balamurugan A, Benhayoune H et al (2009) Morphological and chemical characterisation of biomimetic bone like apatite formation on alkali treated Ti6Al4V titanium alloy. Mater Sci Eng C 29(4):1252–1257CrossRef Faure J, Balamurugan A, Benhayoune H et al (2009) Morphological and chemical characterisation of biomimetic bone like apatite formation on alkali treated Ti6Al4V titanium alloy. Mater Sci Eng C 29(4):1252–1257CrossRef
33.
Zurück zum Zitat Aziz-Kerrzo M, Conroy KG, Fenelon AM et al (2001) Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials 22(12):1531–1539CrossRef Aziz-Kerrzo M, Conroy KG, Fenelon AM et al (2001) Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials 22(12):1531–1539CrossRef
34.
Zurück zum Zitat Karthega M, Nagarajan S, Rajendran N (2010) In vitro studies of hydrogen peroxide treated titanium for biomedical applications. Electrochim Acta 55(6):2201–2209CrossRef Karthega M, Nagarajan S, Rajendran N (2010) In vitro studies of hydrogen peroxide treated titanium for biomedical applications. Electrochim Acta 55(6):2201–2209CrossRef
35.
Zurück zum Zitat Karthega M, Rajendran N (2010) Hydrogen peroxide treatment on Ti–6Al–4V alloy: a promising surface modification technique for orthopaedic application. Appl Surf Sci 256(7):2176–2183CrossRef Karthega M, Rajendran N (2010) Hydrogen peroxide treatment on Ti–6Al–4V alloy: a promising surface modification technique for orthopaedic application. Appl Surf Sci 256(7):2176–2183CrossRef
36.
Zurück zum Zitat Lu X, Zhao Z, Leng Y (2007) Biomimetic calcium phosphate coatings on nitric-acid-treated titanium surfaces. Mater Sci Eng C 27(4):700–708CrossRef Lu X, Zhao Z, Leng Y (2007) Biomimetic calcium phosphate coatings on nitric-acid-treated titanium surfaces. Mater Sci Eng C 27(4):700–708CrossRef
37.
Zurück zum Zitat Park J-W, Kim Y-J, Jang J-H et al (2010) Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces. Acta Biomater 6(4):1661–1670CrossRef Park J-W, Kim Y-J, Jang J-H et al (2010) Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces. Acta Biomater 6(4):1661–1670CrossRef
38.
Zurück zum Zitat Browne M, Gregson PJ (2000) Effect of mechanical surface pretreatment on metal ion release. Biomaterials 21:385–392CrossRef Browne M, Gregson PJ (2000) Effect of mechanical surface pretreatment on metal ion release. Biomaterials 21:385–392CrossRef
39.
Zurück zum Zitat Barranco V, Onofre E, Escudero ML et al (2010) Characterization of roughness and pitting corrosion of surfaces modified by blasting and thermal oxidation. Surf Coat Technol 204(23):3783–3793CrossRef Barranco V, Onofre E, Escudero ML et al (2010) Characterization of roughness and pitting corrosion of surfaces modified by blasting and thermal oxidation. Surf Coat Technol 204(23):3783–3793CrossRef
40.
Zurück zum Zitat Kumar S, Narayanan TSNS, Ganesh Sundara Raman S et al (2010) Surface modification of CP-Ti to improve the fretting-corrosion resistance: thermal oxidation vs. anodizing. Mater Sci Eng C 30(6):921–927CrossRef Kumar S, Narayanan TSNS, Ganesh Sundara Raman S et al (2010) Surface modification of CP-Ti to improve the fretting-corrosion resistance: thermal oxidation vs. anodizing. Mater Sci Eng C 30(6):921–927CrossRef
41.
Zurück zum Zitat Hall J, Lausmaa J (2000) Properties of a new porous oxide surface on titanium implants. Appl Osseointegration Res 1(1):5–9 Hall J, Lausmaa J (2000) Properties of a new porous oxide surface on titanium implants. Appl Osseointegration Res 1(1):5–9
42.
Zurück zum Zitat Sul Y-T, Johansson CB, Jeong Y et al (2001) The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 23:329–346CrossRef Sul Y-T, Johansson CB, Jeong Y et al (2001) The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 23:329–346CrossRef
43.
Zurück zum Zitat Sul Y-T, Johansson CB, Petronis S et al (2002) Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 23(2):491–501CrossRef Sul Y-T, Johansson CB, Petronis S et al (2002) Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 23(2):491–501CrossRef
44.
Zurück zum Zitat Yang B, Uchida M, Kim H-M et al (2004) Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25(6):1003–1010CrossRef Yang B, Uchida M, Kim H-M et al (2004) Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25(6):1003–1010CrossRef
45.
Zurück zum Zitat Chrzanowski W, Szewczenko J, Tyrlik-Held J et al (2005) Influence of the anodic oxidation on the physicochemical properties of the Ti6Al4V ELI alloy. J Mater Process Technol 162–163:163–168CrossRef Chrzanowski W, Szewczenko J, Tyrlik-Held J et al (2005) Influence of the anodic oxidation on the physicochemical properties of the Ti6Al4V ELI alloy. J Mater Process Technol 162–163:163–168CrossRef
46.
Zurück zum Zitat Jaeggi C, Kern P, Michler J et al (2005) Anodic thin films on titanium used as masks for surface micropatterning of biomedical devices. Surf Coat Technol 200:1913–1919CrossRef Jaeggi C, Kern P, Michler J et al (2005) Anodic thin films on titanium used as masks for surface micropatterning of biomedical devices. Surf Coat Technol 200:1913–1919CrossRef
47.
Zurück zum Zitat Ng BS, Annergren I, Soutar AM et al (2005) Characterisation of a duplex TiO2/CaP coating on Ti6Al4V for hard tissue replacement. Biomaterials 26(10):1087–1095CrossRef Ng BS, Annergren I, Soutar AM et al (2005) Characterisation of a duplex TiO2/CaP coating on Ti6Al4V for hard tissue replacement. Biomaterials 26(10):1087–1095CrossRef
48.
Zurück zum Zitat Oh H-J, Lee J-H, Jeong Y et al (2005) Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method. Surf Coat Technol 198(1-3):247–252CrossRef Oh H-J, Lee J-H, Jeong Y et al (2005) Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method. Surf Coat Technol 198(1-3):247–252CrossRef
49.
Zurück zum Zitat Kuromoto N, Simao RA, Soares GA (2007) Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages. Mater Charact 58:114–121CrossRef Kuromoto N, Simao RA, Soares GA (2007) Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages. Mater Charact 58:114–121CrossRef
50.
Zurück zum Zitat Cui X, Kim H-M, Kawashita M et al (2009) Preparation of bioactive titania films on titanium metal via anodic oxidation. Dent Mater 25:80–86CrossRef Cui X, Kim H-M, Kawashita M et al (2009) Preparation of bioactive titania films on titanium metal via anodic oxidation. Dent Mater 25:80–86CrossRef
51.
Zurück zum Zitat Sul Y-T, Johansson C, Byon E et al (2005) The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials 26:6720–6730CrossRef Sul Y-T, Johansson C, Byon E et al (2005) The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials 26:6720–6730CrossRef
52.
Zurück zum Zitat Yau TL, Webster RT (1987) Corrosion of zirconium and hafnium. In: ASM International Handbook Committee (ed) Metals handbook, vol 13. ASM, Materials Park, pp 707–721 Yau TL, Webster RT (1987) Corrosion of zirconium and hafnium. In: ASM International Handbook Committee (ed) Metals handbook, vol 13. ASM, Materials Park, pp 707–721
53.
Zurück zum Zitat Cox B (2005) Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys. J Nucl Mater 336(2–3):331–368CrossRef Cox B (2005) Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys. J Nucl Mater 336(2–3):331–368CrossRef
54.
Zurück zum Zitat Zander D, Köster U (2004) Corrosion of amorphous and nanocrystalline Zr-based alloys. Mater Sci Eng A 375–377:53–59CrossRef Zander D, Köster U (2004) Corrosion of amorphous and nanocrystalline Zr-based alloys. Mater Sci Eng A 375–377:53–59CrossRef
55.
Zurück zum Zitat Cabrini RL, Guglielmotti MB, Almagro JC (1993) Histomorphometry of initial bone healing around zirconium implants in rats. Implant Dent 2:264–267CrossRef Cabrini RL, Guglielmotti MB, Almagro JC (1993) Histomorphometry of initial bone healing around zirconium implants in rats. Implant Dent 2:264–267CrossRef
56.
Zurück zum Zitat Costa OR, Guglielmotti MB, Rimoli E et al (1994) Use of zircalloy to induce bone regeneration. A 2-year follow-up study. Acta Odontol Latinoam 8(1):17–26 Costa OR, Guglielmotti MB, Rimoli E et al (1994) Use of zircalloy to induce bone regeneration. A 2-year follow-up study. Acta Odontol Latinoam 8(1):17–26
57.
Zurück zum Zitat Guglielmotti MB, Guerrero C, Cabrini RL (1997) Chronodynamic evaluation of the stages of osseointegration in zirconium laminar implants. Acta Odontol Latinoam 10(1):11–23 Guglielmotti MB, Guerrero C, Cabrini RL (1997) Chronodynamic evaluation of the stages of osseointegration in zirconium laminar implants. Acta Odontol Latinoam 10(1):11–23
58.
Zurück zum Zitat Saldaña L, Mendez-Vilas A, Jiang L et al (2007) In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials 28(30):4343–4354CrossRef Saldaña L, Mendez-Vilas A, Jiang L et al (2007) In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials 28(30):4343–4354CrossRef
59.
Zurück zum Zitat Gallardo-Moreno AM, Pacha-Olivenza MA, Saldaña L et al (2009) In vitro biocompatibility and bacterial adhesion of physico-chemically modified Ti6Al4V surface by means of UV irradiation. Acta Biomater 5(1):181–192CrossRef Gallardo-Moreno AM, Pacha-Olivenza MA, Saldaña L et al (2009) In vitro biocompatibility and bacterial adhesion of physico-chemically modified Ti6Al4V surface by means of UV irradiation. Acta Biomater 5(1):181–192CrossRef
60.
Zurück zum Zitat Okazaki Y, Gotoh E (2005) Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26:11–21CrossRef Okazaki Y, Gotoh E (2005) Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26:11–21CrossRef
61.
Zurück zum Zitat Meisterjahn P, Hoppe HW, Shultze JW (1987) Electrochemical and XPS measurements on thin oxide films on zirconium. J Electroanal Chem 217:159–185CrossRef Meisterjahn P, Hoppe HW, Shultze JW (1987) Electrochemical and XPS measurements on thin oxide films on zirconium. J Electroanal Chem 217:159–185CrossRef
62.
Zurück zum Zitat Bardwell JA, McKubre MCH (1991) AC Impedance spectroscopy of the anodic film on zirconium in neutral solution. Electrochim Acta 36(3/4):647–653CrossRef Bardwell JA, McKubre MCH (1991) AC Impedance spectroscopy of the anodic film on zirconium in neutral solution. Electrochim Acta 36(3/4):647–653CrossRef
63.
Zurück zum Zitat Preusser S, Stimming U, Wippermann K (1994) An optical and electrochemical investigation of ZrO2 thin films (from nm Ti mm thickness). Electrochim Acta 39(8/9):1273–1280CrossRef Preusser S, Stimming U, Wippermann K (1994) An optical and electrochemical investigation of ZrO2 thin films (from nm Ti mm thickness). Electrochim Acta 39(8/9):1273–1280CrossRef
64.
Zurück zum Zitat Patel AM, Spector M (1997) Tribological evaluation of oxidized zirconium using an articular cartilage counterface: a novel material for potential use in hemiarthroplasty. Biomaterials 18:441–447CrossRef Patel AM, Spector M (1997) Tribological evaluation of oxidized zirconium using an articular cartilage counterface: a novel material for potential use in hemiarthroplasty. Biomaterials 18:441–447CrossRef
65.
Zurück zum Zitat Kohn DH (1998) Metals in medical applications. Curr Opin Solid State Mater Sci 3:309–316CrossRef Kohn DH (1998) Metals in medical applications. Curr Opin Solid State Mater Sci 3:309–316CrossRef
66.
Zurück zum Zitat Hanawa T (1999) In vivo metallic biomaterials and surface modification. Materials Sci Eng A A267:260–266CrossRef Hanawa T (1999) In vivo metallic biomaterials and surface modification. Materials Sci Eng A A267:260–266CrossRef
67.
Zurück zum Zitat Hiromoto S, Hanawa T (2002) Re-passivation current of amorphous Zr65Al7.5Ni10Cu17.5 in a Hank’s balanced solution. Electrochim Acta 47:1343–1349CrossRef Hiromoto S, Hanawa T (2002) Re-passivation current of amorphous Zr65Al7.5Ni10Cu17.5 in a Hank’s balanced solution. Electrochim Acta 47:1343–1349CrossRef
68.
Zurück zum Zitat Adolfsson E, Hermansson L (1999) Zirconia–fluorapatite materials produced by HIP. Biomaterials 20(14):1263–1267CrossRef Adolfsson E, Hermansson L (1999) Zirconia–fluorapatite materials produced by HIP. Biomaterials 20(14):1263–1267CrossRef
69.
Zurück zum Zitat Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20(1):1–25CrossRef Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20(1):1–25CrossRef
70.
Zurück zum Zitat Deville S, Chevalier J, Fantozzi G et al (2003) Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. J Eur Ceram Soc 23(15):2975–2982CrossRef Deville S, Chevalier J, Fantozzi G et al (2003) Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. J Eur Ceram Soc 23(15):2975–2982CrossRef
71.
Zurück zum Zitat Carinci F, Pezzetti F, Volinia S et al (2004) Zirconium oxide: analysis of MG63 osteoblast-like cell response by means of a microarray technology. Biomaterials 25(2):215–228CrossRef Carinci F, Pezzetti F, Volinia S et al (2004) Zirconium oxide: analysis of MG63 osteoblast-like cell response by means of a microarray technology. Biomaterials 25(2):215–228CrossRef
72.
Zurück zum Zitat Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27:535–543CrossRef Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27:535–543CrossRef
73.
Zurück zum Zitat Blumenthal W (1976) Zirconium—behaviour in biological systems. J Sci Ind Res 35(7):485–490 Blumenthal W (1976) Zirconium—behaviour in biological systems. J Sci Ind Res 35(7):485–490
74.
Zurück zum Zitat Met C, Vandenbulcke L, Sainte Catherine MC (2003) Friction and wear characteristics of various prosthetic materials sliding against smooth diamond-coated titanium alloy. Wear 255(7–12):1022–1029CrossRef Met C, Vandenbulcke L, Sainte Catherine MC (2003) Friction and wear characteristics of various prosthetic materials sliding against smooth diamond-coated titanium alloy. Wear 255(7–12):1022–1029CrossRef
75.
Zurück zum Zitat Sherepo KM, Red’ko IA (2004) Use of zirconium-based and zirconium-coated implants in traumatology and orthopedics. Biomed Eng 38(2):77–79 Sherepo KM, Red’ko IA (2004) Use of zirconium-based and zirconium-coated implants in traumatology and orthopedics. Biomed Eng 38(2):77–79
76.
Zurück zum Zitat Lee JKL, Maruthainar K, Wardle N et al (2009) Increased force simulator wear testing of a zirconium oxide total knee arthroplasty. Knee 16:269–274CrossRef Lee JKL, Maruthainar K, Wardle N et al (2009) Increased force simulator wear testing of a zirconium oxide total knee arthroplasty. Knee 16:269–274CrossRef
77.
Zurück zum Zitat Ji R, Li XY, Dong H (2010) Ceramic conversion treatment of zirconium alloys to combat corrosion wear. Surf Eng 26:30–36 Ji R, Li XY, Dong H (2010) Ceramic conversion treatment of zirconium alloys to combat corrosion wear. Surf Eng 26:30–36
78.
Zurück zum Zitat Richardson K (2001) Medical device innovator rebuilds lives with zirconium knee implant. Outlook 22:1–4 Richardson K (2001) Medical device innovator rebuilds lives with zirconium knee implant. Outlook 22:1–4
79.
Zurück zum Zitat Stojilovic N, Bender ET, Ramsier RD (2005) Surface chemistry of zirconium. Prog Surf Sci 78(3-4):101–184CrossRef Stojilovic N, Bender ET, Ramsier RD (2005) Surface chemistry of zirconium. Prog Surf Sci 78(3-4):101–184CrossRef
80.
Zurück zum Zitat Gioe TJ, Sharma A, Tatman P et al (2011) Do “premium” joint implants add value? Analysis of high cost joint implants in a Community Registry. Clin Orthop Relat Res 469:48–54CrossRef Gioe TJ, Sharma A, Tatman P et al (2011) Do “premium” joint implants add value? Analysis of high cost joint implants in a Community Registry. Clin Orthop Relat Res 469:48–54CrossRef
81.
Zurück zum Zitat Hunter G, Jones WM, Spector M (2005) Oxidized zirconium. In: Reis MD, Bellemans J, Victor J (eds) Total knee arthroplasty: a guide to get better performance. Springer, Heidelberg, pp 370–380CrossRef Hunter G, Jones WM, Spector M (2005) Oxidized zirconium. In: Reis MD, Bellemans J, Victor J (eds) Total knee arthroplasty: a guide to get better performance. Springer, Heidelberg, pp 370–380CrossRef
82.
Zurück zum Zitat Good V, Widding K, Hunter G et al (2005) Oxidized zirconium: a potentially longer lasting hip implant. Mater Des 26:618–622CrossRef Good V, Widding K, Hunter G et al (2005) Oxidized zirconium: a potentially longer lasting hip implant. Mater Des 26:618–622CrossRef
83.
Zurück zum Zitat Hernigou P, Mathieu G, Poignard A, Manicom O, Filippini P, Demoura A (2007) Oxinium, a new alternative femoral bearing surface option for hip replacement. Eur J Orthop Surg Traumatol 17:243–246CrossRef Hernigou P, Mathieu G, Poignard A, Manicom O, Filippini P, Demoura A (2007) Oxinium, a new alternative femoral bearing surface option for hip replacement. Eur J Orthop Surg Traumatol 17:243–246CrossRef
84.
Zurück zum Zitat Kim Y-HKJ-S, Huh W, Lee K-H (2010) Weight of polyethylene wear particles is similar in TKAS with oxidized zirconium and cobalt-chrome prostheses. Clin Orthop Relat Res 468:1296–1304CrossRef Kim Y-HKJ-S, Huh W, Lee K-H (2010) Weight of polyethylene wear particles is similar in TKAS with oxidized zirconium and cobalt-chrome prostheses. Clin Orthop Relat Res 468:1296–1304CrossRef
85.
Zurück zum Zitat Innocenti M, Matassi F, Carulli C et al (2014) Oxidized zirconium femoral component for TKA: a follow-up note of a previous report at a minimum of 10 years. Knee 21(4):858–861CrossRef Innocenti M, Matassi F, Carulli C et al (2014) Oxidized zirconium femoral component for TKA: a follow-up note of a previous report at a minimum of 10 years. Knee 21(4):858–861CrossRef
86.
Zurück zum Zitat Albrektsson T, Johansson C, Lundgren AK et al (2000) A histomorphometrical and biomechanical analysis. Appl Osseointegration Res 1:21–24 Albrektsson T, Johansson C, Lundgren AK et al (2000) A histomorphometrical and biomechanical analysis. Appl Osseointegration Res 1:21–24
87.
Zurück zum Zitat Sul YT, Johansson CB, Kang Y et al (2002) Bone reactions to oxidized titanium implants with electrochemical anion sulphuric acid and phosphoric acid incorporation. Clin Implant Dent Relat Res 4(2):78–87CrossRef Sul YT, Johansson CB, Kang Y et al (2002) Bone reactions to oxidized titanium implants with electrochemical anion sulphuric acid and phosphoric acid incorporation. Clin Implant Dent Relat Res 4(2):78–87CrossRef
88.
Zurück zum Zitat Pan J, Thierry D, Leygraf C (1994) Electrochemical and XPS studies of titanium for biomaterial applications with respect to the effect of hydrogen peroxide. J Biomed Mater Res 28:113–122CrossRef Pan J, Thierry D, Leygraf C (1994) Electrochemical and XPS studies of titanium for biomaterial applications with respect to the effect of hydrogen peroxide. J Biomed Mater Res 28:113–122CrossRef
89.
Zurück zum Zitat Katunar MR, Sanchez AG, Ballarre J et al (2014) Can anodised zirconium implant stimulate bone formation? Preliminary study in rat model. Prog Biomater 3:1–10CrossRef Katunar MR, Sanchez AG, Ballarre J et al (2014) Can anodised zirconium implant stimulate bone formation? Preliminary study in rat model. Prog Biomater 3:1–10CrossRef
90.
Zurück zum Zitat Aladjem A (1973) Review—anodic oxidation of titanium and its alloys. J Mater Sci 8:688–704CrossRef Aladjem A (1973) Review—anodic oxidation of titanium and its alloys. J Mater Sci 8:688–704CrossRef
91.
Zurück zum Zitat Blackwood DJ, Peter LM (1989) The influence of growth rate on the properties of anodic oxide films on titanium. Electrochim Acta 34(11):1505–1511CrossRef Blackwood DJ, Peter LM (1989) The influence of growth rate on the properties of anodic oxide films on titanium. Electrochim Acta 34(11):1505–1511CrossRef
92.
Zurück zum Zitat Delplancke J-L, Garnier A, Massiani Y et al (1994) Influence of the anodizing procedure on the structure and the properties of titanium oxide films and its effects on copper nucleation. Electrochim Acta 39(8/9):1281–1289CrossRef Delplancke J-L, Garnier A, Massiani Y et al (1994) Influence of the anodizing procedure on the structure and the properties of titanium oxide films and its effects on copper nucleation. Electrochim Acta 39(8/9):1281–1289CrossRef
93.
Zurück zum Zitat Ohtsuka T, Otsuki T (1998) The influence of the growth rate on the semiconductive properties of titanium anodic oxide films. Corros Sci 40(6):951–958CrossRef Ohtsuka T, Otsuki T (1998) The influence of the growth rate on the semiconductive properties of titanium anodic oxide films. Corros Sci 40(6):951–958CrossRef
94.
Zurück zum Zitat Shibata T, Zhu Y-C (1995) The effect of film formation conditions on the structure and composition of anodic oxide films on titanium. Corros Sci 37(2):253–270CrossRef Shibata T, Zhu Y-C (1995) The effect of film formation conditions on the structure and composition of anodic oxide films on titanium. Corros Sci 37(2):253–270CrossRef
95.
Zurück zum Zitat Linarez Pérez OE, Fuertes VC, Pérez MA et al (2008) Characterization of the anodic growth and dissolution of oxide films on valve metals. Electrochem Commun 10(3):433–437CrossRef Linarez Pérez OE, Fuertes VC, Pérez MA et al (2008) Characterization of the anodic growth and dissolution of oxide films on valve metals. Electrochem Commun 10(3):433–437CrossRef
96.
Zurück zum Zitat Sato N (1990) An overview on the passivity of metals. Corros Sci 31:1–19CrossRef Sato N (1990) An overview on the passivity of metals. Corros Sci 31:1–19CrossRef
97.
Zurück zum Zitat Macdonald DD (1999) Passivity—the key to our metals-based civilization. Pure Appl Chem 71(6):951–978CrossRef Macdonald DD (1999) Passivity—the key to our metals-based civilization. Pure Appl Chem 71(6):951–978CrossRef
98.
Zurück zum Zitat Lohrengel MM (1993) Thin anodic oxide layers on aluminium and other valve metals: high field regime. Mater Sci Eng R Rep 11(6):243–294CrossRef Lohrengel MM (1993) Thin anodic oxide layers on aluminium and other valve metals: high field regime. Mater Sci Eng R Rep 11(6):243–294CrossRef
99.
Zurück zum Zitat Lohrengel MM (1994) Formation of ionic space charge layers in oxide films on valve metals. Electrochim Acta 39(8/9):1265–1271CrossRef Lohrengel MM (1994) Formation of ionic space charge layers in oxide films on valve metals. Electrochim Acta 39(8/9):1265–1271CrossRef
100.
Zurück zum Zitat Olsson C-OA, Landolt D (2003) Anodisation of a Nb-Zr alloy. Electrochim Acta 48:3999–4011CrossRef Olsson C-OA, Landolt D (2003) Anodisation of a Nb-Zr alloy. Electrochim Acta 48:3999–4011CrossRef
101.
Zurück zum Zitat Hodgson AWE, Kurz S, Virtanen S et al (2004) Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochim Acta 49:2167–2178CrossRef Hodgson AWE, Kurz S, Virtanen S et al (2004) Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochim Acta 49:2167–2178CrossRef
102.
Zurück zum Zitat Schneider M, Lämmel C, Heubner C et al (2013) Anomalies in high-field growth of aluminium oxide using pulse anodizing. Surf Interface Anal 45(10):1497–1502CrossRef Schneider M, Lämmel C, Heubner C et al (2013) Anomalies in high-field growth of aluminium oxide using pulse anodizing. Surf Interface Anal 45(10):1497–1502CrossRef
103.
Zurück zum Zitat Van Overmeere Q, Proost J (2011) Stress-affected and stress-affecting instabilities during the growth of anodic oxide films. Electrochim Acta 56(28):10507–10515CrossRef Van Overmeere Q, Proost J (2011) Stress-affected and stress-affecting instabilities during the growth of anodic oxide films. Electrochim Acta 56(28):10507–10515CrossRef
104.
Zurück zum Zitat Vanhumbeeck JF, Proost J (2009) Current understanding of Ti anodisation: functional, morphological, chemical and mechanical aspects. Corros Rev 27(3):117–204CrossRef Vanhumbeeck JF, Proost J (2009) Current understanding of Ti anodisation: functional, morphological, chemical and mechanical aspects. Corros Rev 27(3):117–204CrossRef
105.
Zurück zum Zitat Macdonald DD (1992) Point defect model for the passive state. J Electrochem Soc 139(12):3434–3449CrossRef Macdonald DD (1992) Point defect model for the passive state. J Electrochem Soc 139(12):3434–3449CrossRef
106.
Zurück zum Zitat Zhang L, Macdonald DD, Sikora E et al (1998) On the kinetics of growth of anodic oxide films. J Electrochem Soc 145(3):898–905CrossRef Zhang L, Macdonald DD, Sikora E et al (1998) On the kinetics of growth of anodic oxide films. J Electrochem Soc 145(3):898–905CrossRef
107.
Zurück zum Zitat Macdonald DD (2011) The history of the Point Defect Model for the passive state: a brief review of film growth aspects. Electrochim Acta 56(4):1761–1772CrossRef Macdonald DD (2011) The history of the Point Defect Model for the passive state: a brief review of film growth aspects. Electrochim Acta 56(4):1761–1772CrossRef
108.
Zurück zum Zitat Sloppy JD, Lu Z, Dickey EC et al (2013) Growth mechanism of anodic tantalum pentoxide formed in phosphoric acid. Electrochim Acta 87:82–91CrossRef Sloppy JD, Lu Z, Dickey EC et al (2013) Growth mechanism of anodic tantalum pentoxide formed in phosphoric acid. Electrochim Acta 87:82–91CrossRef
109.
Zurück zum Zitat Ellerbrock D, MacDonald DD (2014) Passivity of titanium, part 1: film growth model diagnostics. J Solid State Electrochem 18(5):1485–1493CrossRef Ellerbrock D, MacDonald DD (2014) Passivity of titanium, part 1: film growth model diagnostics. J Solid State Electrochem 18(5):1485–1493CrossRef
110.
Zurück zum Zitat Goossens A, Vazquez M, Macdonald DD (1996) The nature of electronic states in anodic zirconium oxide films part 1: the potential distribution. Electrochim Acta 41(1):35–45CrossRef Goossens A, Vazquez M, Macdonald DD (1996) The nature of electronic states in anodic zirconium oxide films part 1: the potential distribution. Electrochim Acta 41(1):35–45CrossRef
111.
Zurück zum Zitat Goossens A, Vazquez M, Macdonald DD (1996) The nature of electronic states in anodic zirconium oxide films part 2: photoelectrochemical characterization. Electrochim Acta 41(1):47–55CrossRef Goossens A, Vazquez M, Macdonald DD (1996) The nature of electronic states in anodic zirconium oxide films part 2: photoelectrochemical characterization. Electrochim Acta 41(1):47–55CrossRef
112.
Zurück zum Zitat Bojinov M, Fabricius J, Kinnunen P et al (2001) Electrochemical study of the passive behavior of Ni-Cr alloys in a borate solution. A mixed-conduction model approach. J Electroanal Chem 504:29–44CrossRef Bojinov M, Fabricius J, Kinnunen P et al (2001) Electrochemical study of the passive behavior of Ni-Cr alloys in a borate solution. A mixed-conduction model approach. J Electroanal Chem 504:29–44CrossRef
113.
Zurück zum Zitat Cabrera-Sierra R, Hallen JM, Vazquez-Arenas J et al (2010) EIS characterization of tantalum and niobium oxide films based on a modification of the point defect model. J Electroanal Chem 638(1):51–58CrossRef Cabrera-Sierra R, Hallen JM, Vazquez-Arenas J et al (2010) EIS characterization of tantalum and niobium oxide films based on a modification of the point defect model. J Electroanal Chem 638(1):51–58CrossRef
114.
Zurück zum Zitat Gomez Sanchez A, Katunar M, Schreiner W et al (2014) Structure and dielectric properties of electrochemically grown ZrO2 films. Acta Chim Slov 61:316–327 Gomez Sanchez A, Katunar M, Schreiner W et al (2014) Structure and dielectric properties of electrochemically grown ZrO2 films. Acta Chim Slov 61:316–327
115.
Zurück zum Zitat Girginov A, Bojinov M (2008) Conduction mechanisms in the valve metal/oxide film/electrolyte system. J Univ Chem Technol Metall 43:29–36 Girginov A, Bojinov M (2008) Conduction mechanisms in the valve metal/oxide film/electrolyte system. J Univ Chem Technol Metall 43:29–36
116.
Zurück zum Zitat Dyer CK, Leach JSL (1978) Breakdown and efficiency of anodic oxide growth on titanium. J Electrochem Soc 125(7):1032–1038CrossRef Dyer CK, Leach JSL (1978) Breakdown and efficiency of anodic oxide growth on titanium. J Electrochem Soc 125(7):1032–1038CrossRef
117.
Zurück zum Zitat Nishimura R, Kudo K (1982) Anodic oxidation and kinetics of titanium in 1 M chloride solutions. Corros Sci 22(7):637–645CrossRef Nishimura R, Kudo K (1982) Anodic oxidation and kinetics of titanium in 1 M chloride solutions. Corros Sci 22(7):637–645CrossRef
118.
Zurück zum Zitat Habazaki H, Uozumi M, Konno H et al (2003) Influences of structure and composition on growth of anodic oxide films on Ti-Zr alloys. Electrochim Acta 48(20–22):3257–3266CrossRef Habazaki H, Uozumi M, Konno H et al (2003) Influences of structure and composition on growth of anodic oxide films on Ti-Zr alloys. Electrochim Acta 48(20–22):3257–3266CrossRef
119.
Zurück zum Zitat Freitas MBJG, Eiras C, Bulhões LOS (2004) Breakdown of the niobium oxide film under galvanostatic polarisation and in acid solutions. Corros Sci 46(5):1051–1060CrossRef Freitas MBJG, Eiras C, Bulhões LOS (2004) Breakdown of the niobium oxide film under galvanostatic polarisation and in acid solutions. Corros Sci 46(5):1051–1060CrossRef
120.
Zurück zum Zitat Park YJ, Shin K-H, Song H-J (2007) Effects of anodizing conditions on bond strength of anodically oxidized film on titanium substrate. Appl Surf Sci 253:6013–6018CrossRef Park YJ, Shin K-H, Song H-J (2007) Effects of anodizing conditions on bond strength of anodically oxidized film on titanium substrate. Appl Surf Sci 253:6013–6018CrossRef
121.
Zurück zum Zitat Di Quarto F, Piazza S, Sunseri C (1983) Space charge effects on the growth of anodic oxide films on zirconium metal. J Electrochem Soc 130(5):1014–1021CrossRef Di Quarto F, Piazza S, Sunseri C (1983) Space charge effects on the growth of anodic oxide films on zirconium metal. J Electrochem Soc 130(5):1014–1021CrossRef
122.
Zurück zum Zitat Di Quarto F, Piazza S, Sunseri C (1984) Breakdown phenomena during the growth of anodic oxide films on zirconium metal: influence of experimental parameters on electrical and mechanical breakdown. J Electrochem Soc 131(12):2901–2906CrossRef Di Quarto F, Piazza S, Sunseri C (1984) Breakdown phenomena during the growth of anodic oxide films on zirconium metal: influence of experimental parameters on electrical and mechanical breakdown. J Electrochem Soc 131(12):2901–2906CrossRef
123.
Zurück zum Zitat Di Quarto F, Piazza S, Sunseri C (1986) A phenomenological approach to the mechanical breakdown of anodic oxide films on zirconium. Corros Sci 26(3):213–221CrossRef Di Quarto F, Piazza S, Sunseri C (1986) A phenomenological approach to the mechanical breakdown of anodic oxide films on zirconium. Corros Sci 26(3):213–221CrossRef
124.
Zurück zum Zitat Badekas H, Panagopoulos C (1987) Titanium anodization under constant voltage conditions. Surf Coat Technol 31(4):381–388CrossRef Badekas H, Panagopoulos C (1987) Titanium anodization under constant voltage conditions. Surf Coat Technol 31(4):381–388CrossRef
125.
Zurück zum Zitat Pauporté T, Finne J, Kahn-Harari A et al (2005) Growth by plasma electrolysis of zirconium oxide films in the micrometer range. Surf Coat Technol 199:213–219CrossRef Pauporté T, Finne J, Kahn-Harari A et al (2005) Growth by plasma electrolysis of zirconium oxide films in the micrometer range. Surf Coat Technol 199:213–219CrossRef
126.
Zurück zum Zitat Proost J, Vanhumbeeck JF, Van Overmeere Q (2009) Instability of anodically formed TiO2 layers (revisited). Electrochim Acta 55(2):350–357CrossRef Proost J, Vanhumbeeck JF, Van Overmeere Q (2009) Instability of anodically formed TiO2 layers (revisited). Electrochim Acta 55(2):350–357CrossRef
127.
Zurück zum Zitat Narayanan R, Seshadri SK (2007) Phosphoric acid anodization of Ti–6Al–4V—structural and corrosion aspects. Corros Sci 49(2):542–558CrossRef Narayanan R, Seshadri SK (2007) Phosphoric acid anodization of Ti–6Al–4V—structural and corrosion aspects. Corros Sci 49(2):542–558CrossRef
128.
Zurück zum Zitat Song H-J, Kim M-K, Jung G-C et al (2007) The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics. Surf Coat Technol 201(21):8738–8745CrossRef Song H-J, Kim M-K, Jung G-C et al (2007) The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics. Surf Coat Technol 201(21):8738–8745CrossRef
129.
Zurück zum Zitat Blackwood DJ, Chooi SKM (2002) Stability of protective oxide films formed on a porous titanium. Corros Sci 44:395–405CrossRef Blackwood DJ, Chooi SKM (2002) Stability of protective oxide films formed on a porous titanium. Corros Sci 44:395–405CrossRef
130.
Zurück zum Zitat Yahalom J, Zahavi J (1970) Electrolytic breakdown crystallization of anodic oxide films on Al, Ta and Ti. Electrochim Acta 15:1429–1435CrossRef Yahalom J, Zahavi J (1970) Electrolytic breakdown crystallization of anodic oxide films on Al, Ta and Ti. Electrochim Acta 15:1429–1435CrossRef
131.
Zurück zum Zitat Trivinho-Strixino F, Guimarães FEG, Pereira EC (2008) Zirconium oxide anodic films: optical and structural properties. Chem Phys Lett 461(1–3):82–86CrossRef Trivinho-Strixino F, Guimarães FEG, Pereira EC (2008) Zirconium oxide anodic films: optical and structural properties. Chem Phys Lett 461(1–3):82–86CrossRef
132.
Zurück zum Zitat Schneider M, Kremmer K (2014) The effect of bath aging on the microstructure of anodic oxide layers on AA1050. Surf Coat Technol 246:64–70CrossRef Schneider M, Kremmer K (2014) The effect of bath aging on the microstructure of anodic oxide layers on AA1050. Surf Coat Technol 246:64–70CrossRef
133.
Zurück zum Zitat Aggerbeck M, Canulescu S, Dirscherl K et al (2014) Appearance of anodised aluminium: effect of alloy composition and prior surface finish. Surf Coat Technol 254:28–41CrossRef Aggerbeck M, Canulescu S, Dirscherl K et al (2014) Appearance of anodised aluminium: effect of alloy composition and prior surface finish. Surf Coat Technol 254:28–41CrossRef
134.
Zurück zum Zitat Sul YT, Jeong Y, Johansson C et al (2006) Oxidized, bioactive implants are rapidly and strongly integrated in bone. Part 1—experimental implants. Clin Oral Implants Res 17(5):521–526CrossRef Sul YT, Jeong Y, Johansson C et al (2006) Oxidized, bioactive implants are rapidly and strongly integrated in bone. Part 1—experimental implants. Clin Oral Implants Res 17(5):521–526CrossRef
135.
Zurück zum Zitat Delplancke JL, Degrez M, Fontana A et al (1982) Self-colour anodizing of titanium. Surf Technol 16(2):153–162CrossRef Delplancke JL, Degrez M, Fontana A et al (1982) Self-colour anodizing of titanium. Surf Technol 16(2):153–162CrossRef
136.
Zurück zum Zitat Van Gils S, Mast P, Stijns E et al (2004) Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry. Surf Coat Technol 185(2–3):303–310CrossRef Van Gils S, Mast P, Stijns E et al (2004) Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry. Surf Coat Technol 185(2–3):303–310CrossRef
137.
Zurück zum Zitat Pérez del Pino A, Fernández-Pradas JM, Serra P et al (2004) Coloring of titanium through laser oxidation: comparative study with anodizing. Surf Coat Technol 187(1):106–112CrossRef Pérez del Pino A, Fernández-Pradas JM, Serra P et al (2004) Coloring of titanium through laser oxidation: comparative study with anodizing. Surf Coat Technol 187(1):106–112CrossRef
138.
Zurück zum Zitat Gomez Sanchez A, Schreiner W, Duffó G et al (2011) Surface characterization of anodized zirconium for biomedical applications. Appl Surf Sci 257(15):6397–6405CrossRef Gomez Sanchez A, Schreiner W, Duffó G et al (2011) Surface characterization of anodized zirconium for biomedical applications. Appl Surf Sci 257(15):6397–6405CrossRef
139.
Zurück zum Zitat Gomez Sanchez A, Schreiner W, Duffó G et al (2013) Surface modification of titanium by anodic oxidation in phosphoric acid at low potentials. Part 1. Structure, electronic properties and thickness of the anodic films. Surf Interface Anal 45(6):1037–1046CrossRef Gomez Sanchez A, Schreiner W, Duffó G et al (2013) Surface modification of titanium by anodic oxidation in phosphoric acid at low potentials. Part 1. Structure, electronic properties and thickness of the anodic films. Surf Interface Anal 45(6):1037–1046CrossRef
140.
Zurück zum Zitat Sul YT, Johansson C, Wennerberg A et al (2005) Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Int J Oral Maxillofac Implants 20(3):349–359 Sul YT, Johansson C, Wennerberg A et al (2005) Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Int J Oral Maxillofac Implants 20(3):349–359
141.
Zurück zum Zitat Löberg J, Gretzer C, Mattisson I et al (2014) Electronic properties of anodized TiO2 electrodes and the effect on in vitro response. J Biomed Mater Res B Appl Biomater 102(4):826–839CrossRef Löberg J, Gretzer C, Mattisson I et al (2014) Electronic properties of anodized TiO2 electrodes and the effect on in vitro response. J Biomed Mater Res B Appl Biomater 102(4):826–839CrossRef
142.
Zurück zum Zitat Petersson IU, Löberg JEL, Fredriksson AS et al (2009) Semi-conducting properties of titanium dioxide surfaces on titanium implants. Biomaterials 30(27):4471–4479CrossRef Petersson IU, Löberg JEL, Fredriksson AS et al (2009) Semi-conducting properties of titanium dioxide surfaces on titanium implants. Biomaterials 30(27):4471–4479CrossRef
143.
Zurück zum Zitat Birch JR, Burleigh TD (2000) Oxides formed on titanium by polishing, etching, anodizing or thermal oxidizing. Corros NACE 56(12):1233–1241CrossRef Birch JR, Burleigh TD (2000) Oxides formed on titanium by polishing, etching, anodizing or thermal oxidizing. Corros NACE 56(12):1233–1241CrossRef
144.
Zurück zum Zitat Hodgson AWE, Mueller Y, Forster D et al (2002) Electrochemical characterization of passive films on Ti alloys under simulated biological conditions. Electrochim Acta 47:1913–1923CrossRef Hodgson AWE, Mueller Y, Forster D et al (2002) Electrochemical characterization of passive films on Ti alloys under simulated biological conditions. Electrochim Acta 47:1913–1923CrossRef
145.
Zurück zum Zitat Pan J, Thierry D, Leygraf C (1996) Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim Acta 41(7/8):1143–1153CrossRef Pan J, Thierry D, Leygraf C (1996) Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim Acta 41(7/8):1143–1153CrossRef
146.
Zurück zum Zitat Ibris N, Mirza-Rosca JC (2002) EIS study of Ti and its alloys in biological media. J Electroanal Chem 526:53–62CrossRef Ibris N, Mirza-Rosca JC (2002) EIS study of Ti and its alloys in biological media. J Electroanal Chem 526:53–62CrossRef
147.
Zurück zum Zitat Bozzini B, Carlino P, D’Urzo L et al (2008) An electrochemical impedance investigation of the behaviour of anodically oxidised titanium in human plasma and cognate fluids, relevant to dental applications. J Mater Sci Mater Med 19(11):3443–3453CrossRef Bozzini B, Carlino P, D’Urzo L et al (2008) An electrochemical impedance investigation of the behaviour of anodically oxidised titanium in human plasma and cognate fluids, relevant to dental applications. J Mater Sci Mater Med 19(11):3443–3453CrossRef
148.
Zurück zum Zitat Schmidt AM, Azambuja DS, Martini EMA (2006) Semiconductive properties of titanium anodic oxide films in McIlvine buffer solution. Corros Sci 48:2901–2912CrossRef Schmidt AM, Azambuja DS, Martini EMA (2006) Semiconductive properties of titanium anodic oxide films in McIlvine buffer solution. Corros Sci 48:2901–2912CrossRef
149.
Zurück zum Zitat Blackwood DJ, Greef R, Peter LM (1989) An ellipsometric study of the growth and open-circuit dissolution of the anodic oxide film on titanium. Electrochim Acta 34(6):875–880CrossRef Blackwood DJ, Greef R, Peter LM (1989) An ellipsometric study of the growth and open-circuit dissolution of the anodic oxide film on titanium. Electrochim Acta 34(6):875–880CrossRef
150.
Zurück zum Zitat Serruys Y, Sakout T, Gorse D (1993) Anodic oxidation of titanium in 1M H2SO4 studied by Rutherford backscattering. Surf Sci 282:279–287CrossRef Serruys Y, Sakout T, Gorse D (1993) Anodic oxidation of titanium in 1M H2SO4 studied by Rutherford backscattering. Surf Sci 282:279–287CrossRef
151.
Zurück zum Zitat Nagahara K, Sakairi M, Takahashi H et al (2007) Mechanism of formation and growth of sunflower-shaped imperfections in anodic oxide films on niobium. Electrochim Acta 52(5):2134–2145CrossRef Nagahara K, Sakairi M, Takahashi H et al (2007) Mechanism of formation and growth of sunflower-shaped imperfections in anodic oxide films on niobium. Electrochim Acta 52(5):2134–2145CrossRef
152.
Zurück zum Zitat Aloia Games L, Gomez Sanchez A, Jimenez-Pique E et al (2012) Chemical and mechanical properties of anodized cp-titanium in NH 4 H 2PO 4/NH 4F media for biomedical applications. Surf Coat Technol 206(23):4791–4798CrossRef Aloia Games L, Gomez Sanchez A, Jimenez-Pique E et al (2012) Chemical and mechanical properties of anodized cp-titanium in NH 4 H 2PO 4/NH 4F media for biomedical applications. Surf Coat Technol 206(23):4791–4798CrossRef
153.
Zurück zum Zitat Mogoda AS, El-Taib Heakal F, Ghoneim AA (1992) Formation and dissolution behaviour of ZrO2 film in H3PO4 acid solutions. Thin Solid Films 219(1–2):146–152CrossRef Mogoda AS, El-Taib Heakal F, Ghoneim AA (1992) Formation and dissolution behaviour of ZrO2 film in H3PO4 acid solutions. Thin Solid Films 219(1–2):146–152CrossRef
154.
Zurück zum Zitat Shibata Y, Tanimoto Y (2015) A review of improved fixation methods for dental implants. Part I: surface optimization for rapid osseointegration. J Prosthodont Res 59(1):20–33CrossRef Shibata Y, Tanimoto Y (2015) A review of improved fixation methods for dental implants. Part I: surface optimization for rapid osseointegration. J Prosthodont Res 59(1):20–33CrossRef
155.
Zurück zum Zitat McRae GA, Maguire MA, Jeffrey CA et al (2002) A comparison of fractal dimensions determined from atomic force microscopy and impedance spectroscopy of anodic oxides on Zr–2.5Nb. Appl Surf Sci 191(1–4):94–105CrossRef McRae GA, Maguire MA, Jeffrey CA et al (2002) A comparison of fractal dimensions determined from atomic force microscopy and impedance spectroscopy of anodic oxides on Zr–2.5Nb. Appl Surf Sci 191(1–4):94–105CrossRef
156.
Zurück zum Zitat Sanchez AG, Katunar M, Schreiner W et al (2014) Structure and dielectric properties of electrochemically grown ZrO2 films. Acta Chim Slov 61(2):316–327 Sanchez AG, Katunar M, Schreiner W et al (2014) Structure and dielectric properties of electrochemically grown ZrO2 films. Acta Chim Slov 61(2):316–327
157.
Zurück zum Zitat Xing J, Xia Z, Hu J et al (2013) Time dependence of growth and crystallization of anodic titanium oxide films in potentiostatic mode. Corros Sci 75:212–219CrossRef Xing J, Xia Z, Hu J et al (2013) Time dependence of growth and crystallization of anodic titanium oxide films in potentiostatic mode. Corros Sci 75:212–219CrossRef
158.
Zurück zum Zitat Farina SB, Sanchez AG, Ceré S (2015) Effect of surface modification on the corrosion resistance of Zr-2.5Nb as material for permanent implants. Proc Mater Sci 8:1166–1173CrossRef Farina SB, Sanchez AG, Ceré S (2015) Effect of surface modification on the corrosion resistance of Zr-2.5Nb as material for permanent implants. Proc Mater Sci 8:1166–1173CrossRef
159.
Zurück zum Zitat Hanawa T, Ota M (1992) Characterization of surface film formed on titanium in electrolyte using XPS. Appl Surf Sci 55:269–276CrossRef Hanawa T, Ota M (1992) Characterization of surface film formed on titanium in electrolyte using XPS. Appl Surf Sci 55:269–276CrossRef
160.
Zurück zum Zitat de Sena LA, Rocha NCC, Andrade MC et al (2003) Bioactivity assessment of titanium sheets electrochemically coated with thick oxide films. Surf Coat Technol 166:254–258CrossRef de Sena LA, Rocha NCC, Andrade MC et al (2003) Bioactivity assessment of titanium sheets electrochemically coated with thick oxide films. Surf Coat Technol 166:254–258CrossRef
161.
Zurück zum Zitat Sul Y-T (2003) The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 24:3893–3907CrossRef Sul Y-T (2003) The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 24:3893–3907CrossRef
162.
Zurück zum Zitat Lee J-H, Kim S-E, Kim Y-J et al (2006) Effects of microstructure of anodic titania on the formation of bioactive compounds. Mater Chem Phys 98:39–43CrossRef Lee J-H, Kim S-E, Kim Y-J et al (2006) Effects of microstructure of anodic titania on the formation of bioactive compounds. Mater Chem Phys 98:39–43CrossRef
163.
Zurück zum Zitat Müller FA, Bottino MC, Müller L et al (2008) In vitro apatite formation on chemically treated (P/M) Ti–13Nb–13Zr. Dent Mater 24(1):50–56CrossRef Müller FA, Bottino MC, Müller L et al (2008) In vitro apatite formation on chemically treated (P/M) Ti–13Nb–13Zr. Dent Mater 24(1):50–56CrossRef
164.
Zurück zum Zitat Tsutsumi Y, Nishimura D, Doi H et al (2009) Difference in surface reactions between titanium and zirconium in Hank’s solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization. Mater Sci Eng C 29:1702–1708CrossRef Tsutsumi Y, Nishimura D, Doi H et al (2009) Difference in surface reactions between titanium and zirconium in Hank’s solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization. Mater Sci Eng C 29:1702–1708CrossRef
165.
Zurück zum Zitat Tsutsumi Y, Nishimura D, Doi H et al (2010) Cathodic alkaline treatment of zirconium to give the ability to form calcium phosphate. Acta Biomater 6(10):4161–4166CrossRef Tsutsumi Y, Nishimura D, Doi H et al (2010) Cathodic alkaline treatment of zirconium to give the ability to form calcium phosphate. Acta Biomater 6(10):4161–4166CrossRef
166.
Zurück zum Zitat Gomez Sanchez A, Ballarre J, Orellano JC et al (2013) Surface modification of zirconium by anodisation as material for permanent implants: in vitro and in vivo study. J Mater Sci Mater Med 24(1):161–169CrossRef Gomez Sanchez A, Ballarre J, Orellano JC et al (2013) Surface modification of zirconium by anodisation as material for permanent implants: in vitro and in vivo study. J Mater Sci Mater Med 24(1):161–169CrossRef
167.
Zurück zum Zitat Mammeri F, Rozes L, Le Bourhis E et al (2006) Elaboration and mechanical characterization of nanocomposites thin films. Part II: correlation between structure and mechanical properties of SiO2-PMMA hybrid materials. J Eur Ceram Soc 26:267–272CrossRef Mammeri F, Rozes L, Le Bourhis E et al (2006) Elaboration and mechanical characterization of nanocomposites thin films. Part II: correlation between structure and mechanical properties of SiO2-PMMA hybrid materials. J Eur Ceram Soc 26:267–272CrossRef
168.
Zurück zum Zitat Wang L-N, Luo J-L (2012) Electrochemical behaviour of anodic zirconium oxide nanotubes in simulated body fluid. Appl Surf Sci 258(10):4830–4833CrossRef Wang L-N, Luo J-L (2012) Electrochemical behaviour of anodic zirconium oxide nanotubes in simulated body fluid. Appl Surf Sci 258(10):4830–4833CrossRef
169.
Zurück zum Zitat Hoerth RM, Katunar MR, Gomez Sanchez A et al (2014) A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality. J Mater Sci Mater Med 25(2):411–422CrossRef Hoerth RM, Katunar MR, Gomez Sanchez A et al (2014) A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality. J Mater Sci Mater Med 25(2):411–422CrossRef
170.
Zurück zum Zitat Lausmaa J, Kasemo B, Mattsson H (1990) Surface spectroscopic characterization of titanium implants materials. Appl Surf Sci 44:133–146CrossRef Lausmaa J, Kasemo B, Mattsson H (1990) Surface spectroscopic characterization of titanium implants materials. Appl Surf Sci 44:133–146CrossRef
171.
Zurück zum Zitat Lausmaa J, Kasemo B, Mattsson H et al (1990) Multi-technique surface characterization of oxide films on electropolished and anodically oxidized titanium. Appl Surf Sci 45:189–200CrossRef Lausmaa J, Kasemo B, Mattsson H et al (1990) Multi-technique surface characterization of oxide films on electropolished and anodically oxidized titanium. Appl Surf Sci 45:189–200CrossRef
172.
Zurück zum Zitat de Souza GB, de Lima GG, Kuromoto NK et al (2011) Tribo-mechanical characterization of rough, porous and bioactive Ti anodic layers. J Mech Behav Biomed Mater 4(5):796–806CrossRef de Souza GB, de Lima GG, Kuromoto NK et al (2011) Tribo-mechanical characterization of rough, porous and bioactive Ti anodic layers. J Mech Behav Biomed Mater 4(5):796–806CrossRef
173.
Zurück zum Zitat Diamanti MV, Pedeferri MP (2007) Effect of anodic oxidation parameters on the titanium oxides formation. Corros Sci 49(2):939–948CrossRef Diamanti MV, Pedeferri MP (2007) Effect of anodic oxidation parameters on the titanium oxides formation. Corros Sci 49(2):939–948CrossRef
174.
Zurück zum Zitat El-Mahdy GA, Mahmoud SS, El-Dahan HA (1996) Effect of halide ions on the formation and dissolution behaviour of zirconium oxide. Thin Solid Films 286(1–2):289–294CrossRef El-Mahdy GA, Mahmoud SS, El-Dahan HA (1996) Effect of halide ions on the formation and dissolution behaviour of zirconium oxide. Thin Solid Films 286(1–2):289–294CrossRef
175.
Zurück zum Zitat Dunleavy CS, Golosnoy IO, Curran JA et al (2009) Characterisation of discharge events during plasma electrolytic oxidation. Surf Coat Technol 203(22):3410–3419CrossRef Dunleavy CS, Golosnoy IO, Curran JA et al (2009) Characterisation of discharge events during plasma electrolytic oxidation. Surf Coat Technol 203(22):3410–3419CrossRef
176.
Zurück zum Zitat Sah SP, Tatsuno Y, Aoki Y et al (2011) Dielectric breakdown and healing of anodic oxide films on aluminium under single pulse anodizing. Corros Sci 53(5):1838–1844CrossRef Sah SP, Tatsuno Y, Aoki Y et al (2011) Dielectric breakdown and healing of anodic oxide films on aluminium under single pulse anodizing. Corros Sci 53(5):1838–1844CrossRef
177.
Zurück zum Zitat Lukiyanchuk IV, Rudnev VS, Tyrina LM et al (2014) Plasma electrolytic oxide coatings on valve metals and their activity in CO oxidation. Appl Surf Sci 315:481–489CrossRef Lukiyanchuk IV, Rudnev VS, Tyrina LM et al (2014) Plasma electrolytic oxide coatings on valve metals and their activity in CO oxidation. Appl Surf Sci 315:481–489CrossRef
178.
Zurück zum Zitat Oliveira FG, Ribeiro AR, Perez G et al (2015) Understanding growth mechanisms and tribocorrosion behaviour of porous TiO2 anodic films containing calcium, phosphorous and magnesium. Appl Surf Sci 341:1–12CrossRef Oliveira FG, Ribeiro AR, Perez G et al (2015) Understanding growth mechanisms and tribocorrosion behaviour of porous TiO2 anodic films containing calcium, phosphorous and magnesium. Appl Surf Sci 341:1–12CrossRef
179.
Zurück zum Zitat Liu X, Li G, Xia Y (2012) Investigation of the discharge mechanism of plasma electrolytic oxidation using Ti tracer. Surf Coat Technol 206(21):4462–4465CrossRef Liu X, Li G, Xia Y (2012) Investigation of the discharge mechanism of plasma electrolytic oxidation using Ti tracer. Surf Coat Technol 206(21):4462–4465CrossRef
180.
Zurück zum Zitat Abbasi S, Bayati MR, Golestani-Fard F et al (2011) Micro arc oxidized HAp–TiO2 nanostructured hybrid layers-part I: effect of voltage and growth time. Appl Surf Sci 257(14):5944–5949CrossRef Abbasi S, Bayati MR, Golestani-Fard F et al (2011) Micro arc oxidized HAp–TiO2 nanostructured hybrid layers-part I: effect of voltage and growth time. Appl Surf Sci 257(14):5944–5949CrossRef
181.
Zurück zum Zitat Quintero D, Galvis O, Calderón JA et al (2014) Effect of electrochemical parameters on the formation of anodic films on commercially pure titanium by plasma electrolytic oxidation. Surf Coat Technol 258:1223–1231CrossRef Quintero D, Galvis O, Calderón JA et al (2014) Effect of electrochemical parameters on the formation of anodic films on commercially pure titanium by plasma electrolytic oxidation. Surf Coat Technol 258:1223–1231CrossRef
182.
Zurück zum Zitat Wang Y, Yu H, Chen C et al (2015) Review of the biocompatibility of micro-arc oxidation coated titanium alloys. Mater Des 85:640–652 Wang Y, Yu H, Chen C et al (2015) Review of the biocompatibility of micro-arc oxidation coated titanium alloys. Mater Des 85:640–652
183.
Zurück zum Zitat Abbasi S, Golestani-Fard F, Rezaie HR et al (2012) MAO-derived hydroxyapatite/TiO2 nanostructured multi-layer coatings on titanium substrate. Appl Surf Sci 261:37–42CrossRef Abbasi S, Golestani-Fard F, Rezaie HR et al (2012) MAO-derived hydroxyapatite/TiO2 nanostructured multi-layer coatings on titanium substrate. Appl Surf Sci 261:37–42CrossRef
184.
Zurück zum Zitat Tsutsumi Y, Niinomi M, Nakai M et al (2012) Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti–29Nb–13Ta–4.6Zr alloy. Appl Surf Sci 262:34–38CrossRef Tsutsumi Y, Niinomi M, Nakai M et al (2012) Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti–29Nb–13Ta–4.6Zr alloy. Appl Surf Sci 262:34–38CrossRef
185.
Zurück zum Zitat Sowa M, Dercz G, Suchanek K et al (2015) Investigation of anodic oxide coatings on zirconium after heat treatment. Appl Surf Sci 346:534–542CrossRef Sowa M, Dercz G, Suchanek K et al (2015) Investigation of anodic oxide coatings on zirconium after heat treatment. Appl Surf Sci 346:534–542CrossRef
186.
Zurück zum Zitat Takebe J, Ito S, Miura S et al (2012) Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles. Mater Sci Eng C 32(1):55–60CrossRef Takebe J, Ito S, Miura S et al (2012) Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles. Mater Sci Eng C 32(1):55–60CrossRef
187.
Zurück zum Zitat Samanipour F, Bayati MR, Zargar HR et al (2011) Electrophoretic enhanced micro arc oxidation of ZrO2–HAp–TiO2 nanostructured porous layers. J Alloys Compd 509(38):9351–9355CrossRef Samanipour F, Bayati MR, Zargar HR et al (2011) Electrophoretic enhanced micro arc oxidation of ZrO2–HAp–TiO2 nanostructured porous layers. J Alloys Compd 509(38):9351–9355CrossRef
188.
Zurück zum Zitat Ha J-Y, Tsutsumi Y, Doi H et al (2011) Enhancement of calcium phosphate formation on zirconium by micro-arc oxidation and chemical treatments. Surf Coat Technol 205(21–22):4948–4955CrossRef Ha J-Y, Tsutsumi Y, Doi H et al (2011) Enhancement of calcium phosphate formation on zirconium by micro-arc oxidation and chemical treatments. Surf Coat Technol 205(21–22):4948–4955CrossRef
189.
Zurück zum Zitat Ribeiro AR, Oliveira F, Boldrini LC et al (2015) Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications. Mater Sci Eng C 54:196–206CrossRef Ribeiro AR, Oliveira F, Boldrini LC et al (2015) Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications. Mater Sci Eng C 54:196–206CrossRef
190.
Zurück zum Zitat Kodama A, Bauer S, Komatsu A et al (2009) Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater 5(6):2322–2330CrossRef Kodama A, Bauer S, Komatsu A et al (2009) Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater 5(6):2322–2330CrossRef
191.
Zurück zum Zitat Kim W-G, Choe H-C, Ko Y-M et al (2009) Nanotube morphology changes for Ti–Zr alloys as Zr content increases. Thin Solid Films 517(17):5033–5037CrossRef Kim W-G, Choe H-C, Ko Y-M et al (2009) Nanotube morphology changes for Ti–Zr alloys as Zr content increases. Thin Solid Films 517(17):5033–5037CrossRef
192.
Zurück zum Zitat Tsuchiya H, Akaki T, Nakata J et al (2009) Metallurgical aspects on the formation of self-organized anodic oxide nanotube layers. Electrochim Acta 54:5155–5162CrossRef Tsuchiya H, Akaki T, Nakata J et al (2009) Metallurgical aspects on the formation of self-organized anodic oxide nanotube layers. Electrochim Acta 54:5155–5162CrossRef
193.
Zurück zum Zitat Muratore F, Baron-Wiechéc A, Hashimoto T et al (2011) Growth of nanotubes on zirconium in glycerol/fluoride electrolytes. Electrochim Acta 56(28):10500–10506CrossRef Muratore F, Baron-Wiechéc A, Hashimoto T et al (2011) Growth of nanotubes on zirconium in glycerol/fluoride electrolytes. Electrochim Acta 56(28):10500–10506CrossRef
194.
Zurück zum Zitat Whitman SR, Raja KS (2014) Formation and electrochemical characterization of anodic ZrO2–WO3 mixed oxide nanotubular arrays. Appl Surf Sci 303:406–418CrossRef Whitman SR, Raja KS (2014) Formation and electrochemical characterization of anodic ZrO2–WO3 mixed oxide nanotubular arrays. Appl Surf Sci 303:406–418CrossRef
195.
Zurück zum Zitat Feng XJ, Macak JM, Albu SP et al (2008) Electrochemical formation of self-organized anodic nanotube coating on Ti–28Zr–8Nb biomedical alloy surface. Acta Biomater 4(2):318–323CrossRef Feng XJ, Macak JM, Albu SP et al (2008) Electrochemical formation of self-organized anodic nanotube coating on Ti–28Zr–8Nb biomedical alloy surface. Acta Biomater 4(2):318–323CrossRef
196.
Zurück zum Zitat Gong D, Grimes CA, Varghese OK et al (2001) Tiranium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16(12):3331–3334CrossRef Gong D, Grimes CA, Varghese OK et al (2001) Tiranium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16(12):3331–3334CrossRef
197.
Zurück zum Zitat Zhao J, Wang X, Chen R et al (2005) Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun 134(10):705–710CrossRef Zhao J, Wang X, Chen R et al (2005) Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun 134(10):705–710CrossRef
198.
Zurück zum Zitat Paulose M, Peng L, Popat KC et al (2008) Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J Membr Sci 319(1–2):199–205CrossRef Paulose M, Peng L, Popat KC et al (2008) Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J Membr Sci 319(1–2):199–205CrossRef
199.
Zurück zum Zitat Zhao J, Wang X, Xu R et al (2008) Fabrication of high aspect ratio zirconia nanotube arrays by anodization of zirconium foils. Mater Lett 62(29):4428–4430CrossRef Zhao J, Wang X, Xu R et al (2008) Fabrication of high aspect ratio zirconia nanotube arrays by anodization of zirconium foils. Mater Lett 62(29):4428–4430CrossRef
200.
Zurück zum Zitat Smith BS, Yoriya S, Grissom L et al (2010) Hemocompatibility of titania nanotube arrays. J Biomed Mater Res A 95A(2):350–360CrossRef Smith BS, Yoriya S, Grissom L et al (2010) Hemocompatibility of titania nanotube arrays. J Biomed Mater Res A 95A(2):350–360CrossRef
201.
Zurück zum Zitat Ismail S, Ahmad ZA, Berenov A et al (2011) Effect of applied voltage and fluoride ion content on the formation of zirconia nanotube arrays by anodic oxidation of zirconium. Corros Sci 53(4):1156–1164CrossRef Ismail S, Ahmad ZA, Berenov A et al (2011) Effect of applied voltage and fluoride ion content on the formation of zirconia nanotube arrays by anodic oxidation of zirconium. Corros Sci 53(4):1156–1164CrossRef
202.
Zurück zum Zitat Tsuchiya H, Schmuki P (2004) Thick self-organized porous zirconium oxide formed in H2SO4/NH4F electrolytes. Electrochem Commun 6(11):1131–1134CrossRef Tsuchiya H, Schmuki P (2004) Thick self-organized porous zirconium oxide formed in H2SO4/NH4F electrolytes. Electrochem Commun 6(11):1131–1134CrossRef
203.
Zurück zum Zitat Berger S, Jakubka F, Schmuki P (2008) Formation of hexagonally ordered nanoporous anodic zirconia. Electrochem Commun 10(12):1916–1919CrossRef Berger S, Jakubka F, Schmuki P (2008) Formation of hexagonally ordered nanoporous anodic zirconia. Electrochem Commun 10(12):1916–1919CrossRef
204.
Zurück zum Zitat Tsuchiya H, Macak J, Sieber I et al (2006) Self-organized nanoporous valve metal oxide layers. In: Marcus P, Maurice V (eds) Passivation of metals and semiconductors, and properties of thin oxide layers. Elsevier, Amsterdam, pp 187–192CrossRef Tsuchiya H, Macak J, Sieber I et al (2006) Self-organized nanoporous valve metal oxide layers. In: Marcus P, Maurice V (eds) Passivation of metals and semiconductors, and properties of thin oxide layers. Elsevier, Amsterdam, pp 187–192CrossRef
205.
Zurück zum Zitat Aïnouche L, Hamadou L, Kadri A et al (2014) Interfacial barrier layer properties of three generations of TiO2 nanotube arrays. Electrochim Acta 133:597–609CrossRef Aïnouche L, Hamadou L, Kadri A et al (2014) Interfacial barrier layer properties of three generations of TiO2 nanotube arrays. Electrochim Acta 133:597–609CrossRef
206.
Zurück zum Zitat Bauer S, Kleber S, Schmuki P (2006) TiO2 nanotubes: tailoring the geometry in H3PO4/HF electrolytes. Electrochem Commun 8(8):1321–1325CrossRef Bauer S, Kleber S, Schmuki P (2006) TiO2 nanotubes: tailoring the geometry in H3PO4/HF electrolytes. Electrochem Commun 8(8):1321–1325CrossRef
207.
Zurück zum Zitat Bauer S, Pittrof A, Tsuchiya H et al (2011) Size-effects in TiO2 nanotubes: diameter dependent anatase/rutile stabilization. Electrochem Commun 13(6):538–541CrossRef Bauer S, Pittrof A, Tsuchiya H et al (2011) Size-effects in TiO2 nanotubes: diameter dependent anatase/rutile stabilization. Electrochem Commun 13(6):538–541CrossRef
208.
Zurück zum Zitat Narayanan R, Kwon T-Y, Kim K-H (2009) Anodic TiO2 from stirred Na2SO4/NaF electrolytes: effect of applied voltage and stirring. Mater Lett 63(23):2003–2006CrossRef Narayanan R, Kwon T-Y, Kim K-H (2009) Anodic TiO2 from stirred Na2SO4/NaF electrolytes: effect of applied voltage and stirring. Mater Lett 63(23):2003–2006CrossRef
209.
Zurück zum Zitat Regonini D, Satka A, Jaroenworaluck A et al (2012) Factors influencing surface morphology of anodized TiO2 nanotubes. Electrochim Acta 74:244–253CrossRef Regonini D, Satka A, Jaroenworaluck A et al (2012) Factors influencing surface morphology of anodized TiO2 nanotubes. Electrochim Acta 74:244–253CrossRef
210.
Zurück zum Zitat Manole CC, Pirvu C, Demetrescu I (2009) TiO2: from nanotubes to nanopores by changing the anodizing voltage in floride-glycerol electrolyte. Key Engineering Materials 415:5–8CrossRef Manole CC, Pirvu C, Demetrescu I (2009) TiO2: from nanotubes to nanopores by changing the anodizing voltage in floride-glycerol electrolyte. Key Engineering Materials 415:5–8CrossRef
211.
Zurück zum Zitat Manole CC, Pirvu C, Demetrescu I (2010) Evaluation of TiO2 nanotubes changes after ultrasonication treatment. Mol Cryst Liq Cryst 521(1):84–92CrossRef Manole CC, Pirvu C, Demetrescu I (2010) Evaluation of TiO2 nanotubes changes after ultrasonication treatment. Mol Cryst Liq Cryst 521(1):84–92CrossRef
212.
Zurück zum Zitat Yasuda K, Schmuki P (2007) Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochim Acta 52(12):4053–4061CrossRef Yasuda K, Schmuki P (2007) Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochim Acta 52(12):4053–4061CrossRef
213.
Zurück zum Zitat Zhao J, Xu R, Wang X et al (2008) In situ synthesis of zirconia nanotube crystallines by direct anodization. Corros Sci 50(6):1593–1597CrossRef Zhao J, Xu R, Wang X et al (2008) In situ synthesis of zirconia nanotube crystallines by direct anodization. Corros Sci 50(6):1593–1597CrossRef
214.
Zurück zum Zitat Kunze J, Müller L, Macak JM et al (2008) Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochim Acta 53(23):6995–7003CrossRef Kunze J, Müller L, Macak JM et al (2008) Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochim Acta 53(23):6995–7003CrossRef
215.
Zurück zum Zitat Popat KC, Leoni L, Grimes CA et al (2007) Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28(21):3188–3197CrossRef Popat KC, Leoni L, Grimes CA et al (2007) Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28(21):3188–3197CrossRef
216.
Zurück zum Zitat Souza MEP, Ballester M, Freire CMA (2007) EIS characterisation of Ti anodic oxide porous films formed using modulated potential. Surf Coat Technol 201(18):7775–7780CrossRef Souza MEP, Ballester M, Freire CMA (2007) EIS characterisation of Ti anodic oxide porous films formed using modulated potential. Surf Coat Technol 201(18):7775–7780CrossRef
217.
Zurück zum Zitat Minagar S, Berndt C, Wen C (2015) Fabrication and characterization of nanoporous niobia, and nanotubular tantala, titania and zirconia via anodization. J Funct Biomater 6(2):153CrossRef Minagar S, Berndt C, Wen C (2015) Fabrication and characterization of nanoporous niobia, and nanotubular tantala, titania and zirconia via anodization. J Funct Biomater 6(2):153CrossRef
218.
Zurück zum Zitat Park HH, Park IS, Kim KS et al (2010) Bioactive and electrochemical characterization of TiO2 nanotubes on titanium via anodic oxidation. Electrochim Acta 55:6109–6114CrossRef Park HH, Park IS, Kim KS et al (2010) Bioactive and electrochemical characterization of TiO2 nanotubes on titanium via anodic oxidation. Electrochim Acta 55:6109–6114CrossRef
219.
Zurück zum Zitat Guo L, Zhao J, Wang X et al (2009) Bioactivity of zirconia nanotube arrays fabricated by electrochemical anodization. Mater Sci Eng C 29(4):1174–1177CrossRef Guo L, Zhao J, Wang X et al (2009) Bioactivity of zirconia nanotube arrays fabricated by electrochemical anodization. Mater Sci Eng C 29(4):1174–1177CrossRef
220.
Zurück zum Zitat Pittrof A, Bauer S, Schmuki P (2011) Micropatterned TiO2 nanotube surfaces for site-selective nucleation of hydroxyapatite from simulated body fluid. Acta Biomater 7(1):424–431CrossRef Pittrof A, Bauer S, Schmuki P (2011) Micropatterned TiO2 nanotube surfaces for site-selective nucleation of hydroxyapatite from simulated body fluid. Acta Biomater 7(1):424–431CrossRef
221.
Zurück zum Zitat Lewandowska Ż, Piszczek P, Radtke A et al (2015) The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties. J Mater Sci Mater Med 26(4):1–12CrossRef Lewandowska Ż, Piszczek P, Radtke A et al (2015) The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties. J Mater Sci Mater Med 26(4):1–12CrossRef
222.
Zurück zum Zitat Minagar S, Li Y, Berndt CC et al (2015) The influence of titania–zirconia–zirconium titanate nanotube characteristics on osteoblast cell adhesion. Acta Biomater 12:281–289CrossRef Minagar S, Li Y, Berndt CC et al (2015) The influence of titania–zirconia–zirconium titanate nanotube characteristics on osteoblast cell adhesion. Acta Biomater 12:281–289CrossRef
223.
Zurück zum Zitat Peng L, Eltgroth ML, LaTempa TJ et al (2009) The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials 30(7):1268–1272CrossRef Peng L, Eltgroth ML, LaTempa TJ et al (2009) The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials 30(7):1268–1272CrossRef
224.
Zurück zum Zitat Tsuchiya H, Macak JM, Ghicov A et al (2005) Self-organized porous TiO2 and ZrO2 produced by anodization. Corros Sci 47(12):3324–3335CrossRef Tsuchiya H, Macak JM, Ghicov A et al (2005) Self-organized porous TiO2 and ZrO2 produced by anodization. Corros Sci 47(12):3324–3335CrossRef
225.
Zurück zum Zitat Brinker CJ, Scherer GW (1990) Sol-gel science—the physics and chemistry of sol-gel processing. Academic/Elsevier, San Diego Brinker CJ, Scherer GW (1990) Sol-gel science—the physics and chemistry of sol-gel processing. Academic/Elsevier, San Diego
226.
Zurück zum Zitat Guglielmi M (1997) Sol-gel coatings on metals. J Sol-Gel Sci Technol 8(1):443–449 Guglielmi M (1997) Sol-gel coatings on metals. J Sol-Gel Sci Technol 8(1):443–449
227.
Zurück zum Zitat Sanchez C, In M (1992) Molecular design of alkoxide precursors for the synthesis of hybrid organic-inorganic gels. J Non-Cryst Solids 147–148:1–12CrossRef Sanchez C, In M (1992) Molecular design of alkoxide precursors for the synthesis of hybrid organic-inorganic gels. J Non-Cryst Solids 147–148:1–12CrossRef
228.
Zurück zum Zitat Brinker CJ, Hurd AJ, Schunk PR et al (1992) Review of sol-gel thin film formation. J Non-Cryst Solids 147–148:424–436CrossRef Brinker CJ, Hurd AJ, Schunk PR et al (1992) Review of sol-gel thin film formation. J Non-Cryst Solids 147–148:424–436CrossRef
229.
Zurück zum Zitat Izumi K, Tanaka H, Uchida Y et al (1992) Influence of firing conditions on adhesion of methyltrialoxysilane-derived coatings on steel sheets. J Non-Cryst Solids 147–148:483–487CrossRef Izumi K, Tanaka H, Uchida Y et al (1992) Influence of firing conditions on adhesion of methyltrialoxysilane-derived coatings on steel sheets. J Non-Cryst Solids 147–148:483–487CrossRef
230.
Zurück zum Zitat Di Giampaolo Conde AR, Puerta M, Ruiz H et al (1992) Thick aluminosilicate coatings on carbon steel via sol gel. J Non-Cryst Solids 147–148:467–473CrossRef Di Giampaolo Conde AR, Puerta M, Ruiz H et al (1992) Thick aluminosilicate coatings on carbon steel via sol gel. J Non-Cryst Solids 147–148:467–473CrossRef
231.
Zurück zum Zitat Babonneau F, Toutou C, Gavériaux S (1997) O NMR investigation of chemical homogeneity in hybrid systems. J Sol-Gel Sci Technol 8:553–556 Babonneau F, Toutou C, Gavériaux S (1997) O NMR investigation of chemical homogeneity in hybrid systems. J Sol-Gel Sci Technol 8:553–556
232.
Zurück zum Zitat Hoebbel D, Nacken M, Schmidt H (1998) A NMR study on the hydrolysis, condensation and epoxide ring-opening reaction in sols and gels of the system glycodoxypropyltrimethoxysilane-water-titaniumtetraethoxide. J Sol-Gel Sci Technol 12:169–179CrossRef Hoebbel D, Nacken M, Schmidt H (1998) A NMR study on the hydrolysis, condensation and epoxide ring-opening reaction in sols and gels of the system glycodoxypropyltrimethoxysilane-water-titaniumtetraethoxide. J Sol-Gel Sci Technol 12:169–179CrossRef
233.
Zurück zum Zitat Uhlmann D, Suratwala T, Davidson K et al (1997) Sol-gel derived coatings on glass. J Non-Cryst Solids 218:113–122CrossRef Uhlmann D, Suratwala T, Davidson K et al (1997) Sol-gel derived coatings on glass. J Non-Cryst Solids 218:113–122CrossRef
234.
Zurück zum Zitat Brinker CJ, Hurd AJ, Frye GC et al (1990) Sol-gel thin film formation. J Non-Cryst Solids 121(1–3):294–302CrossRef Brinker CJ, Hurd AJ, Frye GC et al (1990) Sol-gel thin film formation. J Non-Cryst Solids 121(1–3):294–302CrossRef
235.
Zurück zum Zitat Puetz J, Aegerter MA (2004) Dip coating technique. In: Aegerter M, Mennig M (eds) Sol-gel technologies for glass producers and users. Springer, New York, pp 37–48CrossRef Puetz J, Aegerter MA (2004) Dip coating technique. In: Aegerter M, Mennig M (eds) Sol-gel technologies for glass producers and users. Springer, New York, pp 37–48CrossRef
236.
Zurück zum Zitat Dislich H, Hussmann E (1981) Amorphous and crystalline dip coatings obtained from organometallic solutions: procedures, chemical processes and products. Thin Solid Films 77(1-3):129–140CrossRef Dislich H, Hussmann E (1981) Amorphous and crystalline dip coatings obtained from organometallic solutions: procedures, chemical processes and products. Thin Solid Films 77(1-3):129–140CrossRef
237.
Zurück zum Zitat Terrier C, Chatelon JP, Roger JA (1997) Electrical and optical properties of Sb:SnO2 thin films obtained by the sol-gel method. Thin Solid Films 295(1–2):95–100CrossRef Terrier C, Chatelon JP, Roger JA (1997) Electrical and optical properties of Sb:SnO2 thin films obtained by the sol-gel method. Thin Solid Films 295(1–2):95–100CrossRef
238.
Zurück zum Zitat Lee JH, Ko KH, Park BO (2003) Electrical and optical properties of ZnO transparent conducting films by the sol-gel method. J Cryst Growth 247(1–2):119–125CrossRef Lee JH, Ko KH, Park BO (2003) Electrical and optical properties of ZnO transparent conducting films by the sol-gel method. J Cryst Growth 247(1–2):119–125CrossRef
239.
Zurück zum Zitat Metroke TL, Parkhill RL, Knobbe ET (2001) Passivation of metal alloys using sol-gel-derived materials—a review. Prog Org Coat 41(4):233–238CrossRef Metroke TL, Parkhill RL, Knobbe ET (2001) Passivation of metal alloys using sol-gel-derived materials—a review. Prog Org Coat 41(4):233–238CrossRef
240.
Zurück zum Zitat Pepe A, Galliano P, Aparicio M et al (2006) Sol-gel coatings on carbon steel: electrochemical evaluation. Surf Coat Technol 200(11):3486–3491CrossRef Pepe A, Galliano P, Aparicio M et al (2006) Sol-gel coatings on carbon steel: electrochemical evaluation. Surf Coat Technol 200(11):3486–3491CrossRef
241.
Zurück zum Zitat Vasiliu I, Gartner M, Anastasescu M et al (2007) Structural and optical properties of the SiO2-P2O5 films obtained by sol-gel method. Thin Solid Films 515(16):6601–6605CrossRef Vasiliu I, Gartner M, Anastasescu M et al (2007) Structural and optical properties of the SiO2-P2O5 films obtained by sol-gel method. Thin Solid Films 515(16):6601–6605CrossRef
242.
Zurück zum Zitat Han C, Pelaez M, Likodimos V et al (2011) Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl Catal B Environ 107(1–2):77–87CrossRef Han C, Pelaez M, Likodimos V et al (2011) Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl Catal B Environ 107(1–2):77–87CrossRef
243.
Zurück zum Zitat Chen D (2001) Anti-reflection (AR) coatings made by sol-gel processes: a review. Sol Energy Mater Sol Cells 68(3–4):313–336CrossRef Chen D (2001) Anti-reflection (AR) coatings made by sol-gel processes: a review. Sol Energy Mater Sol Cells 68(3–4):313–336CrossRef
244.
Zurück zum Zitat Lien SY, Wuu DS, Yeh WC et al (2006) Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique. Sol Energy Mater Sol Cells 90(16):2710–2719CrossRef Lien SY, Wuu DS, Yeh WC et al (2006) Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique. Sol Energy Mater Sol Cells 90(16):2710–2719CrossRef
245.
Zurück zum Zitat Boissiere C, Grosso D, Chaumonnot A et al (2011) Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv Mater 23(5):599–623CrossRef Boissiere C, Grosso D, Chaumonnot A et al (2011) Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv Mater 23(5):599–623CrossRef
246.
Zurück zum Zitat Fedrizzi L, Rodriguez FJ, Rossi S et al (2001) The use of electrochemical techniques to study the corrosion behaviour of organic coatings on steel pretreated with sol-gel zirconia films. Electrochim Acta 46(24–25):3715–3724CrossRef Fedrizzi L, Rodriguez FJ, Rossi S et al (2001) The use of electrochemical techniques to study the corrosion behaviour of organic coatings on steel pretreated with sol-gel zirconia films. Electrochim Acta 46(24–25):3715–3724CrossRef
247.
Zurück zum Zitat Aldrich-Smith G, Jennet N, Housden J (2004) Adhesion of thin coatings-the VAMAS (TWA 22-2) interlaboratory exercise. Surf Coat Technol 196(2–3):336–344 Aldrich-Smith G, Jennet N, Housden J (2004) Adhesion of thin coatings-the VAMAS (TWA 22-2) interlaboratory exercise. Surf Coat Technol 196(2–3):336–344
248.
Zurück zum Zitat Zhang X, Hu L, Sun D (2006) Nanoindentation and nanoscratch profiles of hybrid films based on (methacrylopropyl)trimethoxysilane and tetraethoxysilane. Acta Mater 54:5469–5475CrossRef Zhang X, Hu L, Sun D (2006) Nanoindentation and nanoscratch profiles of hybrid films based on (methacrylopropyl)trimethoxysilane and tetraethoxysilane. Acta Mater 54:5469–5475CrossRef
249.
Zurück zum Zitat Ballarre J, Jimenez-Pique E, Anglada M et al (2009) Mechanical characterization of nano-reinforced silica based sol–gel hybrid coatings on AISI 316L stainless steel using nanoindentation techniques. Surf Coat Technol 203(20):3325–3331CrossRef Ballarre J, Jimenez-Pique E, Anglada M et al (2009) Mechanical characterization of nano-reinforced silica based sol–gel hybrid coatings on AISI 316L stainless steel using nanoindentation techniques. Surf Coat Technol 203(20):3325–3331CrossRef
250.
Zurück zum Zitat Ballarre J, López DA, Cavalieri AL (2009) Frictional and adhesive behavior of organic-inorganic hybrid coatings on surgical grade stainless steel using nano-scratching technique. Wear 266(11–12):1165–1170CrossRef Ballarre J, López DA, Cavalieri AL (2009) Frictional and adhesive behavior of organic-inorganic hybrid coatings on surgical grade stainless steel using nano-scratching technique. Wear 266(11–12):1165–1170CrossRef
251.
Zurück zum Zitat Natsume Y, Sakata H (2000) Zinc oxide films prepared by sol-gel spin-coating. Thin Solid Films 372(1):30–36CrossRef Natsume Y, Sakata H (2000) Zinc oxide films prepared by sol-gel spin-coating. Thin Solid Films 372(1):30–36CrossRef
252.
Zurück zum Zitat de Lima Neto P, Atik M, Avaca LA et al (1994) Sol-gel coatings for chemical protection of stainless steel. J Sol-Gel Sci Technol 2:529–534CrossRef de Lima Neto P, Atik M, Avaca LA et al (1994) Sol-gel coatings for chemical protection of stainless steel. J Sol-Gel Sci Technol 2:529–534CrossRef
253.
Zurück zum Zitat de Damborenea JJ, Pellegri N, de Sanctis O et al (1995) Electrochemical behavior of SiO2 sol-gel coatings on stainless steels. J Sol-Gel Sci Technol 4:239–244CrossRef de Damborenea JJ, Pellegri N, de Sanctis O et al (1995) Electrochemical behavior of SiO2 sol-gel coatings on stainless steels. J Sol-Gel Sci Technol 4:239–244CrossRef
254.
Zurück zum Zitat Habibovic P, Barrere F, van Blitterswijk CA et al (2002) Biomimetic hydroxyapatite coatings on metal implants. J Am Ceram Soc 85(3):517–522CrossRef Habibovic P, Barrere F, van Blitterswijk CA et al (2002) Biomimetic hydroxyapatite coatings on metal implants. J Am Ceram Soc 85(3):517–522CrossRef
255.
Zurück zum Zitat Chou T, Chandrasekaran C, Cao GZ (2003) Sol-gel derived hybrid coatings for corrosion protection. J Sol-Gel Sci Technol 26:321–327CrossRef Chou T, Chandrasekaran C, Cao GZ (2003) Sol-gel derived hybrid coatings for corrosion protection. J Sol-Gel Sci Technol 26:321–327CrossRef
256.
Zurück zum Zitat Duran A, Conde A, Gómez Coedo A et al (2004) Sol-gel coatings for protection and bioactivation of metals used in orthopaedic devices. J Mater Chem 14:2282–2290CrossRef Duran A, Conde A, Gómez Coedo A et al (2004) Sol-gel coatings for protection and bioactivation of metals used in orthopaedic devices. J Mater Chem 14:2282–2290CrossRef
257.
Zurück zum Zitat Im K-H, Lee S-B, Kim K-M et al (2007) Improvement of bonding strength to titanium surface by sol-gel derived hybrid coating of hydroxyapatite and titania by sol-gel process. Surf Coat Technol 202(4-7):1135–1138CrossRef Im K-H, Lee S-B, Kim K-M et al (2007) Improvement of bonding strength to titanium surface by sol-gel derived hybrid coating of hydroxyapatite and titania by sol-gel process. Surf Coat Technol 202(4-7):1135–1138CrossRef
258.
Zurück zum Zitat Biehl V, Breme J (2001) Metallic biomaterials. Mat-wiss, u Werkstofftech 32:137–144CrossRef Biehl V, Breme J (2001) Metallic biomaterials. Mat-wiss, u Werkstofftech 32:137–144CrossRef
259.
Zurück zum Zitat Bastidas JM, Polo JL, Torres CL et al (2001) A study of the stability of AISI 316L stainless steel pitting corrosion through its transfer function. Corros Sci 43:269–281CrossRef Bastidas JM, Polo JL, Torres CL et al (2001) A study of the stability of AISI 316L stainless steel pitting corrosion through its transfer function. Corros Sci 43:269–281CrossRef
260.
Zurück zum Zitat Shih C-C, Shih C-M, Su Y-Y et al (2004) Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications. Corros Sci 46:427–441CrossRef Shih C-C, Shih C-M, Su Y-Y et al (2004) Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications. Corros Sci 46:427–441CrossRef
261.
Zurück zum Zitat Balamurugan A, Balossier G, Kannan S et al (2006) Elaboration of sol-gel derived apatite films on surgical grade stainless steel for biomedical applications. Mater Lett 60(17–18):2288–2293CrossRef Balamurugan A, Balossier G, Kannan S et al (2006) Elaboration of sol-gel derived apatite films on surgical grade stainless steel for biomedical applications. Mater Lett 60(17–18):2288–2293CrossRef
262.
Zurück zum Zitat López DA, Duran A, Ceré S (2008) Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions. J Mater Sci Mater Med 19(5):2137–2144CrossRef López DA, Duran A, Ceré S (2008) Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions. J Mater Sci Mater Med 19(5):2137–2144CrossRef
263.
Zurück zum Zitat Walczak J, Shahgaldi F, Heatley F (1998) In vivo corrosion of 316L stainless steel hip implants: morphology and elemental composition of corrosion products. Biomaterials 19:229–237CrossRef Walczak J, Shahgaldi F, Heatley F (1998) In vivo corrosion of 316L stainless steel hip implants: morphology and elemental composition of corrosion products. Biomaterials 19:229–237CrossRef
264.
Zurück zum Zitat Shih C-C, Shih C-M, Su Y-Y et al (2005) Galvanic current induced by heterogeneous structures on stainless steel wire. Corros Sci 47:2199–2212CrossRef Shih C-C, Shih C-M, Su Y-Y et al (2005) Galvanic current induced by heterogeneous structures on stainless steel wire. Corros Sci 47:2199–2212CrossRef
265.
Zurück zum Zitat Staiger MP, Pietak AM, Huadmai J et al (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734CrossRef Staiger MP, Pietak AM, Huadmai J et al (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734CrossRef
266.
Zurück zum Zitat Black J (2006) Biological performance of biomaterials: fundamentals of biocompatibility, 4th edn. CRC Press/Taylor & Francis Group, Florida Black J (2006) Biological performance of biomaterials: fundamentals of biocompatibility, 4th edn. CRC Press/Taylor & Francis Group, Florida
267.
Zurück zum Zitat Kraus T, Fischerauer SF, Hänzi AC et al (2012) Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater 8(3):1230–1238CrossRef Kraus T, Fischerauer SF, Hänzi AC et al (2012) Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater 8(3):1230–1238CrossRef
268.
Zurück zum Zitat Song G, Atrens A (2003) Understanding magnesium corrosion. A framework for improved alloy performance. Adv Eng Mater 5(12):837–858CrossRef Song G, Atrens A (2003) Understanding magnesium corrosion. A framework for improved alloy performance. Adv Eng Mater 5(12):837–858CrossRef
269.
Zurück zum Zitat Song G (2005) Recent progress in corrosion and protection of magnesium alloys. Adv Eng Mater 7(7):563–586CrossRef Song G (2005) Recent progress in corrosion and protection of magnesium alloys. Adv Eng Mater 7(7):563–586CrossRef
270.
Zurück zum Zitat Song G, Song S (2007) A possible biodegradable magnesium implant material. Adv Eng Mater 9(4):298–302CrossRef Song G, Song S (2007) A possible biodegradable magnesium implant material. Adv Eng Mater 9(4):298–302CrossRef
271.
Zurück zum Zitat Hench LL, Wilson J (1993) An introduction to bioceramics. Advanced series in ceramics, vol 1. World Scientific Hench, Singapore Hench LL, Wilson J (1993) An introduction to bioceramics. Advanced series in ceramics, vol 1. World Scientific Hench, Singapore
272.
Zurück zum Zitat Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486CrossRef Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486CrossRef
273.
Zurück zum Zitat Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater 2(4):231–239CrossRef Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater 2(4):231–239CrossRef
274.
Zurück zum Zitat Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J Biomed Mater Res 58(6):734–740CrossRef Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J Biomed Mater Res 58(6):734–740CrossRef
275.
Zurück zum Zitat Siqueira RL, Peitl O, Zanotto ED (2011) Gel-derived SiO2-CaO-Na2O-P2O5 bioactive powders: synthesis and in vitro bioactivity. Mater Sci Eng C 31(5):983–991CrossRef Siqueira RL, Peitl O, Zanotto ED (2011) Gel-derived SiO2-CaO-Na2O-P2O5 bioactive powders: synthesis and in vitro bioactivity. Mater Sci Eng C 31(5):983–991CrossRef
276.
Zurück zum Zitat Ducheyne P, Cuckler JM (1992) Bioactive ceramic prosthetic coatings. Clin Orthop Relat Res 276:102–114 Ducheyne P, Cuckler JM (1992) Bioactive ceramic prosthetic coatings. Clin Orthop Relat Res 276:102–114
277.
Zurück zum Zitat Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510CrossRef Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510CrossRef
278.
Zurück zum Zitat Chen CC, Huang TH, Kao CT et al (2004) Electrochemical study of the intro degradation of plasma-sprayed hydroxyapatite/bioactive glass composite coatings after heat treatment. Electrochim Acta 50:1023–1029CrossRef Chen CC, Huang TH, Kao CT et al (2004) Electrochemical study of the intro degradation of plasma-sprayed hydroxyapatite/bioactive glass composite coatings after heat treatment. Electrochim Acta 50:1023–1029CrossRef
279.
Zurück zum Zitat Brama M, Rhodes N, Hunt J et al (2007) Effect of titanium carbide coating on the osseointegration response in vitro and in vivo. Biomaterials 28:595–608CrossRef Brama M, Rhodes N, Hunt J et al (2007) Effect of titanium carbide coating on the osseointegration response in vitro and in vivo. Biomaterials 28:595–608CrossRef
280.
Zurück zum Zitat Vercaigne S, Wolke JGC, Naert I et al (1998) Historphometrical and mechanical evaluation of titanium plasma-spray-coated implants placed in the cortical bone of goats. J Biomed Mater Res 41:41–48CrossRef Vercaigne S, Wolke JGC, Naert I et al (1998) Historphometrical and mechanical evaluation of titanium plasma-spray-coated implants placed in the cortical bone of goats. J Biomed Mater Res 41:41–48CrossRef
281.
Zurück zum Zitat Inagaki M, Yokogawa Y, Kameyama T (2003) Bond strength improvement of hydroxyapatite/titanium composite coating by partial nitriding during RF-thermal plasma spraying. Surf Coat Technol 173(1):1–8CrossRef Inagaki M, Yokogawa Y, Kameyama T (2003) Bond strength improvement of hydroxyapatite/titanium composite coating by partial nitriding during RF-thermal plasma spraying. Surf Coat Technol 173(1):1–8CrossRef
282.
Zurück zum Zitat Bhadang KA, Gross KA (2004) Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings. Biomaterials 25:4935–4945CrossRef Bhadang KA, Gross KA (2004) Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings. Biomaterials 25:4935–4945CrossRef
283.
Zurück zum Zitat Arguedas R, Ledezma-Gairaud M, Sáenz A et al (2008) Synthesis and kinetic study of hydroxy/fluorapatite solid solution formation by decomposition of a Ca-EDTA complex. Z Anorg Allg Chem 634:1791–1794CrossRef Arguedas R, Ledezma-Gairaud M, Sáenz A et al (2008) Synthesis and kinetic study of hydroxy/fluorapatite solid solution formation by decomposition of a Ca-EDTA complex. Z Anorg Allg Chem 634:1791–1794CrossRef
284.
Zurück zum Zitat Weng W, Baptista JL (1998) Sol-gel derived porous hydroxyapatite coatings. J Mater Sci Mater Med 9(3):159–163CrossRef Weng W, Baptista JL (1998) Sol-gel derived porous hydroxyapatite coatings. J Mater Sci Mater Med 9(3):159–163CrossRef
285.
Zurück zum Zitat Kim H-W, Kim H-E, Knowles JC (2004) Fluor-hydroxyapatite sol–gel coating on titanium substrate for hard tissue implants. Biomaterials 25(17):3351–3358CrossRef Kim H-W, Kim H-E, Knowles JC (2004) Fluor-hydroxyapatite sol–gel coating on titanium substrate for hard tissue implants. Biomaterials 25(17):3351–3358CrossRef
286.
Zurück zum Zitat Novak BM (1993) Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Adv Mater 5(6):422–433CrossRef Novak BM (1993) Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Adv Mater 5(6):422–433CrossRef
287.
Zurück zum Zitat Pellice S, Galliano P, Castro Y et al (2003) Hybrid sol-gel coatings produced from TEOS and γ-MPS. J Sol-Gel Sci Technol 28:81–86CrossRef Pellice S, Galliano P, Castro Y et al (2003) Hybrid sol-gel coatings produced from TEOS and γ-MPS. J Sol-Gel Sci Technol 28:81–86CrossRef
288.
Zurück zum Zitat Pellice SA, Williams RJJ, Sobrados I et al (2006) Solutions of hybrid silica microgels as precursors of sol–gel coatings. J Mater Chem 16:3318–3325CrossRef Pellice SA, Williams RJJ, Sobrados I et al (2006) Solutions of hybrid silica microgels as precursors of sol–gel coatings. J Mater Chem 16:3318–3325CrossRef
289.
Zurück zum Zitat Ballarre J, López DA, Rosero NC et al (2008) Electrochemical evaluation of multilayer silica–metacrylate hybrid sol–gel coatings containing bioactive particles on surgical grade stainless steel. Surf Coat Technol 203(1–2):80–86CrossRef Ballarre J, López DA, Rosero NC et al (2008) Electrochemical evaluation of multilayer silica–metacrylate hybrid sol–gel coatings containing bioactive particles on surgical grade stainless steel. Surf Coat Technol 203(1–2):80–86CrossRef
290.
Zurück zum Zitat López DA, Rosero-Navarro NC, Ballarre J et al (2008) Multilayer silica-methacrylate hybrid coatings prepared by sol-gel on stainless steel 316L: electrochemical evaluation. Surf Coat Technol 202(10):2194–2201CrossRef López DA, Rosero-Navarro NC, Ballarre J et al (2008) Multilayer silica-methacrylate hybrid coatings prepared by sol-gel on stainless steel 316L: electrochemical evaluation. Surf Coat Technol 202(10):2194–2201CrossRef
291.
Zurück zum Zitat Santos EM, Radin S, Shenker BJ et al (1998) Si-Ca-P xerogels and bone morphogenetic protein act synergistically on rat stromal marrow cell differentiation in vitro. J Biomed Mater Res 41(1):87–94CrossRef Santos EM, Radin S, Shenker BJ et al (1998) Si-Ca-P xerogels and bone morphogenetic protein act synergistically on rat stromal marrow cell differentiation in vitro. J Biomed Mater Res 41(1):87–94CrossRef
292.
Zurück zum Zitat Avnir D, Lev O, Livage J (2006) Recent bio-applications of sol-gel materials. J Mater Chem 16(11):1013–1030CrossRef Avnir D, Lev O, Livage J (2006) Recent bio-applications of sol-gel materials. J Mater Chem 16(11):1013–1030CrossRef
293.
Zurück zum Zitat Jun S-H, Lee E-J, Yook S-W et al (2010) A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol–gel process. Acta Biomater 6(1):302–307CrossRef Jun S-H, Lee E-J, Yook S-W et al (2010) A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol–gel process. Acta Biomater 6(1):302–307CrossRef
294.
Zurück zum Zitat de Sanctis O, Gomez L, Pellegri N et al (1990) Protective glass coatings on metallic substrates. J Non-Cryst Solids 121:338–343CrossRef de Sanctis O, Gomez L, Pellegri N et al (1990) Protective glass coatings on metallic substrates. J Non-Cryst Solids 121:338–343CrossRef
295.
Zurück zum Zitat Garcia C, Ceré SM, Durán A (2004) Bioactive coatings prepared by sol-gel on stainless steel 316L. J Non-Cryst Solids 348:218–224CrossRef Garcia C, Ceré SM, Durán A (2004) Bioactive coatings prepared by sol-gel on stainless steel 316L. J Non-Cryst Solids 348:218–224CrossRef
296.
Zurück zum Zitat García C, Ceré S, Durán A (2006) Bioactive coatings deposited on titanium alloys. J Non-Cryst Solids 352(32–35):3488–3495CrossRef García C, Ceré S, Durán A (2006) Bioactive coatings deposited on titanium alloys. J Non-Cryst Solids 352(32–35):3488–3495CrossRef
297.
Zurück zum Zitat Oyane A, Nakanishi K, Kim H-M et al (1999) Sol-gel modification of silicone to induce apatite-forming ability. Biomaterials 20:79–84CrossRef Oyane A, Nakanishi K, Kim H-M et al (1999) Sol-gel modification of silicone to induce apatite-forming ability. Biomaterials 20:79–84CrossRef
298.
Zurück zum Zitat Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef
299.
Zurück zum Zitat Balamurugan A, Balossier G, Kannan S et al (2007) In vitro biological, chemical and electrochemical evaluation of titania reinforced hydroxyapatite sol-gel coatings on surgical grade 316L SS. Mater Sci Eng C 27(1):162–171CrossRef Balamurugan A, Balossier G, Kannan S et al (2007) In vitro biological, chemical and electrochemical evaluation of titania reinforced hydroxyapatite sol-gel coatings on surgical grade 316L SS. Mater Sci Eng C 27(1):162–171CrossRef
300.
Zurück zum Zitat Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30:2175–2179CrossRef Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30:2175–2179CrossRef
301.
Zurück zum Zitat Kokubo T, Kushitani H, Sakka S et al (1990) Solutions able to produce in vivo surface-structure changes in bioactive glass-ceramic A. W. J Biomed Mater Res 24:721–734CrossRef Kokubo T, Kushitani H, Sakka S et al (1990) Solutions able to produce in vivo surface-structure changes in bioactive glass-ceramic A. W. J Biomed Mater Res 24:721–734CrossRef
302.
Zurück zum Zitat de Aza AH, Velázquez P, Alemany MI et al (2007) In situ bone-like apatite formation from bioeutectic ceramic in SBF dynamic flow. J Am Ceram Soc 90(4):1200–1207CrossRef de Aza AH, Velázquez P, Alemany MI et al (2007) In situ bone-like apatite formation from bioeutectic ceramic in SBF dynamic flow. J Am Ceram Soc 90(4):1200–1207CrossRef
303.
Zurück zum Zitat Galliano P, de Damborenea JJ, Pascual MJ et al (1998) Sol-gel coatings on 316L stainless steel for clinical applications. J Sol-Gel Sci Technol 13:723–727CrossRef Galliano P, de Damborenea JJ, Pascual MJ et al (1998) Sol-gel coatings on 316L stainless steel for clinical applications. J Sol-Gel Sci Technol 13:723–727CrossRef
304.
Zurück zum Zitat Ballarre J, Orellano JC, Bordenave C et al (2002) In vivo and in vitro evaluation of vitreous coatings on cobalt based alloys for prothetics devices. J Non-Cryst Solids 304(5):278–285CrossRef Ballarre J, Orellano JC, Bordenave C et al (2002) In vivo and in vitro evaluation of vitreous coatings on cobalt based alloys for prothetics devices. J Non-Cryst Solids 304(5):278–285CrossRef
305.
Zurück zum Zitat Ballarre J, Liu Y, Mendoza E et al (2012) Enhancing low cost stainless steel implants: bioactive silica-based sol-gel coatings with wollastonite particles. Int J Nano Biomater 4(1):33–53CrossRef Ballarre J, Liu Y, Mendoza E et al (2012) Enhancing low cost stainless steel implants: bioactive silica-based sol-gel coatings with wollastonite particles. Int J Nano Biomater 4(1):33–53CrossRef
306.
Zurück zum Zitat Pourhashem S, Afshar A (2014) Double layer bioglass-silica coatings on 316L stainless steel by sol–gel method. Ceram Int 40(1 pt A):993–1000CrossRef Pourhashem S, Afshar A (2014) Double layer bioglass-silica coatings on 316L stainless steel by sol–gel method. Ceram Int 40(1 pt A):993–1000CrossRef
307.
Zurück zum Zitat Ballarre J, Pellice SA, Schreiner WH et al (2009) Coatings containing silica nanoparticles and glass ceramic particles applied onto surgical grade stainless steel. Key Eng Mater 396–398:311–314CrossRef Ballarre J, Pellice SA, Schreiner WH et al (2009) Coatings containing silica nanoparticles and glass ceramic particles applied onto surgical grade stainless steel. Key Eng Mater 396–398:311–314CrossRef
308.
Zurück zum Zitat Metikoš-Huković M, Tkalčec E, Kwokal A et al (2003) An in vitro study of Ti and Ti-alloys coated with sol–gel derived hydroxyapatite coatings. Surf Coat Technol 165(1):40–50CrossRef Metikoš-Huković M, Tkalčec E, Kwokal A et al (2003) An in vitro study of Ti and Ti-alloys coated with sol–gel derived hydroxyapatite coatings. Surf Coat Technol 165(1):40–50CrossRef
309.
Zurück zum Zitat Tkalcec E, Sauer M, Nonninger R et al (2001) Sol-gel-derived hydroxyapatite powders and coatings. J Mater Sci 36(21):5253–5263CrossRef Tkalcec E, Sauer M, Nonninger R et al (2001) Sol-gel-derived hydroxyapatite powders and coatings. J Mater Sci 36(21):5253–5263CrossRef
310.
Zurück zum Zitat Hanawa T, Ota M (1991) Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12(8):767–774CrossRef Hanawa T, Ota M (1991) Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12(8):767–774CrossRef
311.
Zurück zum Zitat Shadanbaz S, Dias GJ (2012) Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater 8(1):20–30CrossRef Shadanbaz S, Dias GJ (2012) Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater 8(1):20–30CrossRef
312.
Zurück zum Zitat Rámila A, Balas F, Vallet-Regí M (2002) Synthesis routes for bioactive sol-gel glasses: alkoxides versus nitrates. Chem Mater 14(2):542–548CrossRef Rámila A, Balas F, Vallet-Regí M (2002) Synthesis routes for bioactive sol-gel glasses: alkoxides versus nitrates. Chem Mater 14(2):542–548CrossRef
313.
Zurück zum Zitat Rusu VM, Ng C-H, Wilke M et al (2005) Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials 26(26):5414–5426CrossRef Rusu VM, Ng C-H, Wilke M et al (2005) Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials 26(26):5414–5426CrossRef
314.
Zurück zum Zitat Izquierdo-Barba I, Salinas AJ, Vallet-Regí M (2013) Bioactive glasses: from macro to nano. Int J Appl Glas Sci 4(2):149–161CrossRef Izquierdo-Barba I, Salinas AJ, Vallet-Regí M (2013) Bioactive glasses: from macro to nano. Int J Appl Glas Sci 4(2):149–161CrossRef
315.
Zurück zum Zitat Montenero A, Gnappi G, Ferrari F et al (2000) Sol-gel derived hydroxyapatite coatings on titanium substrate. J Mater Sci 35(11):2791–2797CrossRef Montenero A, Gnappi G, Ferrari F et al (2000) Sol-gel derived hydroxyapatite coatings on titanium substrate. J Mater Sci 35(11):2791–2797CrossRef
316.
Zurück zum Zitat King AD, Birbilis N, Scully JR (2014) Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study. Electrochim Acta 121:394–406CrossRef King AD, Birbilis N, Scully JR (2014) Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study. Electrochim Acta 121:394–406CrossRef
317.
Zurück zum Zitat Lamaka SV, Montemor MF, Galio AF et al (2008) Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy. Electrochim Acta 53(14):4773–4783CrossRef Lamaka SV, Montemor MF, Galio AF et al (2008) Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy. Electrochim Acta 53(14):4773–4783CrossRef
318.
Zurück zum Zitat Rojaee R, Fathi M, Raeissi K (2013) Controlling the degradation rate of AZ91 magnesium alloy via sol–gel derived nanostructured hydroxyapatite coating. Mater Sci Eng C 33(7):3817–3825CrossRef Rojaee R, Fathi M, Raeissi K (2013) Controlling the degradation rate of AZ91 magnesium alloy via sol–gel derived nanostructured hydroxyapatite coating. Mater Sci Eng C 33(7):3817–3825CrossRef
319.
Zurück zum Zitat Barranco V, Carmona N, Galván JC et al (2010) Electrochemical study of tailored sol–gel thin films as pre-treatment prior to organic coating for AZ91 magnesium alloy. Prog Org Coat 68(4):347–355CrossRef Barranco V, Carmona N, Galván JC et al (2010) Electrochemical study of tailored sol–gel thin films as pre-treatment prior to organic coating for AZ91 magnesium alloy. Prog Org Coat 68(4):347–355CrossRef
320.
Zurück zum Zitat Orazem ME, Tribollet B (2008) Equivalent circuits analogs. In: Electrochemical impedance spectroscopy. Wiley, Somerset, pp 157–158CrossRef Orazem ME, Tribollet B (2008) Equivalent circuits analogs. In: Electrochemical impedance spectroscopy. Wiley, Somerset, pp 157–158CrossRef
321.
Zurück zum Zitat Yang L, Zhang E (2009) Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Mater Sci Eng C 29(5):1691–1696CrossRef Yang L, Zhang E (2009) Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Mater Sci Eng C 29(5):1691–1696CrossRef
322.
Zurück zum Zitat Zomorodian A, Santos C, Carmezim MJ et al (2015) “In-vitro” corrosion behaviour of the magnesium alloy with Al and Zn (AZ31) protected with a biodegradable polycaprolactone coating loaded with hydroxyapatite and cephalexin. Electrochim Acta 179:431–440CrossRef Zomorodian A, Santos C, Carmezim MJ et al (2015) “In-vitro” corrosion behaviour of the magnesium alloy with Al and Zn (AZ31) protected with a biodegradable polycaprolactone coating loaded with hydroxyapatite and cephalexin. Electrochim Acta 179:431–440CrossRef
323.
Zurück zum Zitat Ren M, Cai S, Liu T et al (2014) Calcium phosphate glass/MgF2 double layered composite coating for improving the corrosion resistance of magnesium alloy. J Alloys Compd 591:34–40CrossRef Ren M, Cai S, Liu T et al (2014) Calcium phosphate glass/MgF2 double layered composite coating for improving the corrosion resistance of magnesium alloy. J Alloys Compd 591:34–40CrossRef
324.
Zurück zum Zitat Zheng Y, Wu J, Ng JC et al (2002) The absorption and excretion of fluoride and arsenic in humans. Toxicol Lett 133(1):77–82CrossRef Zheng Y, Wu J, Ng JC et al (2002) The absorption and excretion of fluoride and arsenic in humans. Toxicol Lett 133(1):77–82CrossRef
325.
Zurück zum Zitat Bakhsheshi-Rad HR, Idris MH, Abdul-Kadir MR (2013) Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg-Ca-Zn alloy. Surf Coat Technol 222:79–89CrossRef Bakhsheshi-Rad HR, Idris MH, Abdul-Kadir MR (2013) Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg-Ca-Zn alloy. Surf Coat Technol 222:79–89CrossRef
326.
Zurück zum Zitat Li Q, Zhong X, Hu J et al (2008) Preparation and corrosion resistance studies of zirconia coating on fluorinated AZ91D magnesium alloy. Prog Org Coat 63(2):222–227CrossRef Li Q, Zhong X, Hu J et al (2008) Preparation and corrosion resistance studies of zirconia coating on fluorinated AZ91D magnesium alloy. Prog Org Coat 63(2):222–227CrossRef
327.
Zurück zum Zitat Zhang S, Li Q, Fan J et al (2009) Novel composite films prepared by sol-gel technology for the corrosion protection of AZ91D magnesium alloy. Prog Org Coat 66(3):328–335CrossRef Zhang S, Li Q, Fan J et al (2009) Novel composite films prepared by sol-gel technology for the corrosion protection of AZ91D magnesium alloy. Prog Org Coat 66(3):328–335CrossRef
328.
Zurück zum Zitat Trabelsi W, Triki E, Dhouibi L et al (2006) The use of pre-treatments based on doped silane solutions for improved corrosion resistance of galvanised steel substrates. Surf Coat Technol 200(14–15):4240–4250CrossRef Trabelsi W, Triki E, Dhouibi L et al (2006) The use of pre-treatments based on doped silane solutions for improved corrosion resistance of galvanised steel substrates. Surf Coat Technol 200(14–15):4240–4250CrossRef
329.
Zurück zum Zitat Wang D, Bierwagen Gordon P (2009) Sol-gel coatings on metals for corrosion protection. Prog Org Coat 64(4):327–338CrossRef Wang D, Bierwagen Gordon P (2009) Sol-gel coatings on metals for corrosion protection. Prog Org Coat 64(4):327–338CrossRef
330.
Zurück zum Zitat Balamurugan A, Sockalingum G, Michel J et al (2006) Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Mater Lett 60(29–30):3752–3757CrossRef Balamurugan A, Sockalingum G, Michel J et al (2006) Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Mater Lett 60(29–30):3752–3757CrossRef
331.
Zurück zum Zitat Ballarre J, López DA, Schreiner WH et al (2007) Protective hybrid sol-gel coatings containing bioactive particles on surgical grade stainless steel: surface characterization. Appl Surf Sci 253(17):7260–7264CrossRef Ballarre J, López DA, Schreiner WH et al (2007) Protective hybrid sol-gel coatings containing bioactive particles on surgical grade stainless steel: surface characterization. Appl Surf Sci 253(17):7260–7264CrossRef
332.
Zurück zum Zitat Gallardo J, Galliano P, Duran A (2001) Bioactive and protective sol-gel coatings on metals for orthopaedic prostheses. J Sol-Gel Sci Technol 21:65–74CrossRef Gallardo J, Galliano P, Duran A (2001) Bioactive and protective sol-gel coatings on metals for orthopaedic prostheses. J Sol-Gel Sci Technol 21:65–74CrossRef
Metadaten
Titel
Anodisation and Sol–Gel Coatings as Surface Modification to Promote Osseointegration in Metallic Prosthesis
verfasst von
Silvia Cere
Andrea Gomez Sanchez
Josefina Ballarre
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-31849-3_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.